
PlanetJ
WOW

DataEngine

Programmer’s Guide

Version 6.4

PlanetJ Corporation
9212 Mira Este Ct. Suite 203

San Diego, CA 92126

WOW Programmer’s Guide 6.4

Table of Contents

 TABLE OF CONTENTS ... 2
1. USING THE PLANETJ WOW DATAENGINE 6

1.1.KEY DESIGN FEATURES .. 6
1.2.ARCHITECTURE .. 7

2. INTRODUCTION TO JAVA AND JSP’S .. 7
2.1.JAVA EDUCATION LINKS: .. 7
2.2.SPECIALIZED PROGRAMMING ONLINE RESOURCES ... 8
2.3.JSP EDUCATION LINKS: .. 9

3. CUSTOMIZING USER INTERFACES .. 9
3.1.HOW TO DEVELOP JSP’S .. 13
3.2.WOW JSP LAYOUT ... 14

3.2.1.Specifying Custom JSP’s .. 15
3.2.2.Including Information From Signed-On User .. 18
3.2.3.Key Components of a Custom JSP ... 19
3.2.4.Detailed Example of Custom JSP .. 21
3.2.5.Adding a Button to a Custom JSP .. 27

3.3.CONTROLLING ROW COLORS PROGRAMMATICALLY ... 28

4. BUSINESS PROGRAMMING WITH WOW 29
4.1.SUBCLASSING THE WOW “ROW” FOR DATA VALIDATION .. 29
4.2.WORK FLOW ... 29

5. SIGNON (AUTHENTICATION) AND USAGE LOGGING 31
6. CONNECTIONS .. 32

6.1.CONNECTION POOLING .. 32
6.1.1.See If Connection Pool Exists .. 32
6.1.2.Creating a Connection Pool ... 32
6.1.3.Restarting a Connection Pool .. 33
6.1.4.Shutting Down a Connection Pool ... 33

6.2.GETTING AND USING A CONNECTION .. 34
6.3.FREEING A CONNECTION ... 34
6.4.TRANSACTION SUPPORT .. 34

7. DATAENGINE .. 35
7.1.EXECUTING STATEMENTS .. 35

7.1.1.Queries (Selecting Records) ... 35
7.1.2.Updates .. 36

2

WOW Programmer’s Guide 6.4

7.1.3.Using Prepared Statements .. 36
7.2.GETTING DATABASE OBJECTS .. 36

7.2.1.Retrieving All Libraries .. 36
7.2.2.Retrieving All Tables .. 36

8. SQLCONTEXT .. 36
8.1.CREATING AN SQLCONTEXT .. 37
8.2.SQLCONTEXT ATTRIBUTES .. 37

8.2.1.Row Count .. 37
8.2.2.Set RowCollection Subclass (Type of RowCollection) ... 37
8.2.3.Set Row Subclass (Type of Row) .. 38
8.2.4.Set System Alias .. 38
8.2.5.Set Connection ... 38
8.2.6.Set SQL ... 38
8.2.7.Set AutoRefresh .. 39

8.3.SQLCONTEXT OPERATIONS .. 39
8.3.1.Adding/Removing Listeners ... 39
8.3.2.Cloning an SQLContext ... 39
8.3.3.Use Caching ... 40
8.3.4.Using Prepared Statements .. 40

8.4.EXECUTING THE SQLCONTEXT’S SQL .. 41

9. ROWCOLLECTIONS .. 41
9.1.CREATING A ROWCOLLECTION .. 42
9.2.ROWCOLLECTION OPERATIONS .. 42

9.2.1.Getting Next or Previous RowCollection ... 42
9.2.2.Sorting a RowCollection .. 43
9.2.3.Refreshing a RowCollection ... 43

9.3.GENERATING FILES FROM A ROWCOLLECTION ... 44
9.3.1.CSV File From a RowCollection .. 44
9.3.2.Microsoft Word File From a RowCollection ... 44
9.3.3.XML File From a RowCollection ... 44
9.3.4.PDF File From a RowCollection ... 45
9.3.5.FDF File From a RowCollection ... 45

9.4 EXAMPLE OF A ROW COLLECTION OPERATION .. 46
9.5 OPERATION ACTIONS .. 51

10. ROWS ... 54
10.1.ROW SUBCLASSES .. 54
10.2.CREATING A ROW .. 55
10.3.ROW OPERATIONS .. 56

10.3.1.Inserting a Row .. 56
10.3.2.Updating a Row .. 56
10.3.3.Deleting a Row ... 56
10.3.4.Cloning a Row .. 56

10.4.RETRIEVING A ROW’S FIELDS (FIELDCOLLECTION) ... 57

3

WOW Programmer’s Guide 6.4

10.5.GENERATING FILES FROM A ROW .. 57
10.5.1.CSV File From a Row .. 57
10.5.2.Microsoft Word File From a Row .. 58
10.5.3.FDF file from a Row .. 58
10.5.4.PDF file from a Row .. 58
10.5.5.XML File From a Row ... 59

10.6.ROW SUBCLASSING .. 59
10.6.1.Create Row SubClass .. 60
10.6.2.Set WOW to Recognize New Java Class .. 60
10.6.3.Overriding Methods ... 61
10.6.4.Another Example of Overriding Row and Field Methods .. 65
10.6.5.Multiple Methods and Parameters ... 66
10.6.6.Example of Overriding the Update Method in a Row Subclass ... 66
10.6.7.Example of Overriding the Insert Method in a Row Subclass ... 67

10.7.ROW ACTIONS ... 69
10.7.1. Example of Another RowAction ... 72
First Compulsory Method: .. 73
Second Compulsory Method: .. 74

11. FIELDS ... 76
11.1.CREATING A FIELD ... 76
11.2.FIELD CLASSES .. 76

11.2.1.Default Class .. 76
11.2.2.Custom Class .. 77
11.2.3.Benefits of Using Custom Field Classes .. 80

12. WORKING WITH FIELDDESCRIPTORS (FD’S) 81
12.1.CREATING ... 81

12.1.1.Auto Population of Field Data File ... 81
12.2.RETRIEVING AN FD ... 82

12.2.1.FieldDescriptorManager ... 83
12.3.FD OPERATIONS .. 83

12.3.1.Cloning an FD .. 83

13. POSSIBLE VALUES (PV) .. 84
13.1.CREATING POSSIBLE VALUES ... 84

13.1.1.Using an SQL Statement For Possible Values ... 84
13.1.2.Using a Key For Possible Values ... 85
13.1.3.Using a Value For a Possible Value .. 85
13.1.4.Using a Value and a Display Value For Possible Values .. 85

13.2.CREATING A PV CLASS .. 86
13.2.1.Using Existing PV Classes ... 86
13.2.2.Create Custom PV Classes ... 86

13.3.RETRIEVING POSSIBLE VALUES .. 86
13.3.1.FieldDescriptor .. 87
13.3.2.PossibleValueManager .. 87

4

WOW Programmer’s Guide 6.4

14. “MAGIC” REQUESTS ... 87
14.1.REQUESTS ... 87

14.1.1.Page .. 87
14.1.2.Sort ... 88
14.1.3.Refresh .. 88
14.1.4.CSV/Excel ... 88
14.1.5.Microsoft Word .. 88
14.1.6.XML .. 88
14.1.7.PDF .. 88

15. REPORT BREAKS ... 88
15.1.REPORT BREAK FUNCTIONS ... 89
15.2.BREAK COLUMNS .. 89
15.3.OVERALL REPORT BREAKS .. 89
15.4.CREATING REPORT BREAKS ... 90

16. HTML HELPERS .. 91
16.1.HTML GENERATOR .. 91
16.2.HTML EXTRACTOR .. 91
16.3.HTMLCOMPARISONINPUT ... 92
16.4.HTML ELEMENTS .. 93

16.4.1.HTMLTable .. 93
16.4.2.HTMLField ... 95
16.4.3.SimpleHTMLSelect ... 96

17. LOGGING WITH LOG4J .. 97
18. PLANETJ HELPERS .. 98

18.1.CSVHELPER .. 99
18.2.DOCHELPER ... 99
18.3.FDFHELPER .. 99
18.4.PDFHELPER ... 99
18.5.XMLHELPER ... 99
18.6.QIFHELPER .. 100

19. TRANSACTIONS .. 100
 APPENDICES ... 100

1.SETTING UP WOW WITH IBM’S RAD 6.0 .. 100

5

1. Using the PlanetJ WOW DataEngine
The WOW DataEngine is a set of Java based frameworks (APIs) designed to simplify the task of
creating data centric applications. These APIs reside beneath the WOW product and allow
WOW developers to accomplish any programming task possible with Java/JSP and HTML
technologies. The WOW product is intended to allow businesses to easily develop powerful
applications without the need to know and use complex technologies such as Java and JSP’s.
However, we do recognize that WOW will not provide all the features necessary to accomplish
all tasks. Thus, WOW is architected in a very open manner and allows custom logic and custom
views to be inserted at any point. This is accomplished by powerful code generation and
framework technologies. This manual is intended for WOW developers that need to insert
custom logic and custom views within their WOW application. Among other things, the
DataEngine automatically manages the following features:

1. Extraction of relational database rows into business objects. These business objects can
be used for Web based applications or desktop applications.

2. Update a Row in the database.
3. Delete a Row from the database.
4. Insert a Row into the database.
5. Connection pooling (operates with or without WebSphere)
6. Generation of HTML
7. Generates a List View of multiple Row objects.
8. Generates a Detail View of a single Row object.
9. Extraction of HTML data
10. Extract selected business objects from a List View.
11. Extract HTML detail data into a Row object.

1.1. Key Design Features

• Extremely easy to use (many features automatically generated)
• High performance
• NLS enabled
• Multi-user enabled
• ASP model enabled, Multi-company, multi-apps
• OO / MVC model
• UI independent (used for web and non-web apps)
• Customizable (config files to control internals operations)
• Highly productive for programmers and end users
• Usable against any JDBC database
• Designed for 2 or 3 tier operations

1.2. Architecture

2. Introduction to Java and JSP’s
WOW is developed in 100% pure Java using standards-based technologies. Much of the user
interface is developed in JSP (Java Server Pages). This document assumes the reader is familiar
with Java and JSP technologies. If you are not, you should obtain education, which is available
from a variety of sources.

2.1. Java Education Links:

The Sun Java Tutorials Site
http://java.sun.com/docs/books/tutorial/index.html

The Java Developer ConnectionSM
http://developer.java.sun.com

Code Conventions
http://java.sun.com/docs/codeconv/
Conventions that developers within Sun try to follow when writing programs in the Java
programming language.

About.com Focus on Java
http://java.about.com
Has articles and links to many resources relating to Java

DataEngine (FieldDescriptor, Row, Table)

Core Functionality

HTMLGenerator and HTMLExtractor

Java Swing Generator

Web Data Manager
(DFU)

Web Data
Application

Builder

XML /PDF Generator

Web Data Table
Builder

http://java.about.com/
http://java.sun.com/docs/codeconv/
http://developer.java.sun.com/
http://java.sun.com/docs/books/tutorial/index.html

JavaWorld Magazine
http://www.javaworld.net
Has articles about current programming topics.

Java Boutique
http://javaboutique.internet.com
Has applets (some including source code), tutorials, book reviews, and more.

Java Developer's Journal
http://www.sys-con.com/java/
An online subset of a print magazine. Includes source code and selected articles.

2.2. Specialized Programming Online Resources

The J2EETM Tutorial
http://java.sun.com/j2ee/tutorial/index.html
A beginner's guide to developing enterprise applications on the Java 2 Platform, Enterprise
Edition SDK.

Java 3DTM API Tutorial
http://java.sun.com/products/java-media/3D/collateral/
Has descriptions and examples of the most commonly used features in the Java 3D API.

XML Technologies
http://java.sun.com/xml/tutorial_intro.html
Introduces XML and tells you how to use the Java XML APIs.

The JNDI Tutorial
http://java.sun.com/products/jndi/tutorial/
Tells you how to use the JavaTM Naming and Directory Interface (JNDI) for associating names
and attributes with objects.

JDC Tutorials
http://developer.java.sun.com/developer/onlineTraining/
Many tutorials, covering a wealth of topics. Subjects include JavaBeans, Enterprise JavaBeans,
JDBC, and Java 2D.

The Swing Connection
http://java.sun.com/products/jfc/tsc/
The Swing engineering team's Web site. Has articles written both by Swing creators and by
external programmers who use Swing.

The Swing/JFC FAQ
http://www.drye.com/java/faq.html
Unofficial answers to frequently asked questions about Swing.

http://www.drye.com/java/faq.html
http://java.sun.com/products/jfc/tsc/
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/jndi/tutorial/
http://java.sun.com/xml/tutorial_intro.html
http://java.sun.com/products/java-media/3D/collateral/
http://java.sun.com/j2ee/tutorial/index.html
http://www.sys-con.com/java/
http://javaboutique.internet.com/
http://www.javaworld.net/

Apple's Developer Site
http://developer.apple.com/java/

2.3. JSP Education Links:

JSP Resource Index
http://www.jspin.com/
Has tutorials, articles, everything to do with JSP’s and web applications.

JSP Tags Getting Started
http://jsptags.com/gettingstarted/index.jsp
Beginning Steps to get on the right track in developing Java Server Pages.

JSP Insider
http://www.jspinsider.com/content.jsp
Free good resource for getting example JSP code and help.

Cetus Links
http://cetus-links.org/oo_javaserver_pages.html
A collection of links on objects & components relating to JSP’s.

The Server Side
http://www.theserverside.com/
Articles, news, discussion, and other resources for JavaServer Pages.

JSP Tutorial
http://www.visualbuilder.com/jsp/tutorial/
The Visual Builder’s JSP Tutorial

JSP and J2EE Design Tutorial
http://www.visualbuilder.com/jsp/design/
The Visual Builder’s JSP Design Tutorial

3. Customizing User Interfaces
All screens produced by WOW can be replaced with customized versions specific for each user.
This can be done by creating custom JSP’s and then instructing WOW to use the custom JSP for
various operations.

You may need to produce a custom JSP when you need to provide UI behavior that is not
possible with the base WOW Builder. NOTE: Color, font, images, etc can normally be
customized through CSS. Refer to the CSS sections of this document as well as the WOW
Builders Guide.

http://www.visualbuilder.com/jsp/design/
http://www.visualbuilder.com/jsp/tutorial/
http://www.theserverside.com/
http://cetus-links.org/oo_javaserver_pages.html
http://www.jspinsider.com/content.jsp
http://jsptags.com/gettingstarted/index.jsp
http://www.jspin.com/
http://developer.apple.com/java/

As a simple introduction to JSP customization, we will walk through the following example on
creating a custom insert screen.

The screenshot below shows the default insert screen before any customization:

First, determine which operation is being used to display the insert button that goes to the insert
screen you’d like to customize. In this example, that operation is All Employees (which selects
from and inserts into the employee table). Edit the All Employees operation and specify the
custom JSP (which we’ll call new_default_add_body.jsp) in the Properties field as highlighted in
the figure below.

The original insert JSP can be found under
<Tomcat>/webapps/wow64/dataengine/jsp/default_add_body.jsp .
Make a copy of this file and rename it new_default_add_body.jsp . Move it to the following
location (if this directory structure does not exist, create it):
<Tomcat>/webapps/wow64/user/samples/jsp .

Now, open this new JSP, add the text highlighted in red below, and save. The full code from the
new JSP (with customizations highlighted in red) is given below:

==
new_default_add_body.jsp
==

<%@ page import="planetj.database.*" %>
<%@ page import="planetj.dataengine.*" %>
<%@ page import="planetj.dataengine.display.*" %>

<%
Row row = (Row) DataEngineManager.getCurrentRow(request);
boolean includeTop = true;
boolean includeBottom = true;

if (row != null) {
String addButtons = IJSPPages.DEFAULT_ADD_BUTTONS_JSP;
// set flag to denote updateable
request.setAttribute(IDataEngine.SHOW_UPDATEABLE_ROW, Boolean.TRUE);

DetailDisplayPropertyGroup ddpg = (DetailDisplayPropertyGroup)
 row.getPropertyGroup(DetailDisplayPropertyGroup.DETAILS_DISPLAY);
if (ddpg != null) {

// check to see if should include buttons on top and bottom
includeTop = ddpg.isShowButtons(DetailDisplayPropertyGroup.BUTTON_LOCATION_TOP);
includeBottom =

ddpg.isShowButtons(DetailDisplayPropertyGroup.BUTTON_LOCATION_BOTTOM);

addButtons = ddpg.getAddButtons();

if (IJSPPages.DEFAULT_ADD_BUTTONS_JSP.equals (addButtons)) {
// check request
String requestAddButtons = (String) request.getAttribute
 (DetailDisplayPropertyGroup.JSP_ADD_BUTTONS);
if (null != requestAddButtons) {

// use override from request
addButtons = requestAddButtons;

}
}

}
%>

<table cellpadding="0" cellspacing="10">
<tbody>

<tr>
<td>--This comment will come before anything else--</td>

</tr>

<% if (includeTop) { %>
 <tr>

<td>
---Right before top buttons---
<% request.setAttribute("GENERATETOPBUTTONS", new Object()); %>
<jsp:include page="<%= addButtons %>" flush="true" />
<% request.removeAttribute("GENERATETOPBUTTONS"); %>
---Right after top buttons---

</td>
</tr>

<% } %>
<tr class="details-border">
 <td>

<table cellpadding="0" cellspacing="1" border="0" width="100%">
<tbody>

<tr class="details-body">
<td>

--This text is inside of the table and will appear right
before

 the row details--
<% request.setAttribute(IDataEngine.ROW_KEY,

 row.getNavigationKey()); %>
<jsp:include page="<%= IDataEngine.DEFAULT_ROW_DETAILS %>"

 flush="true" />
</td>

</tr>
</tbody>

</table>
</td>

</tr>

<% if (includeBottom) { %>
<tr><td><jsp:include page="<%= addButtons %>" flush="true" /></td></tr>

<% } %>

<tr>
<td>--This comment will be this page’s footer--</td>

</tr>
</tbody>

</table>
<% } %>
==

Note that these customizations are all simple HTML. There was no Java coding needed. Study
the JSP code and notice that it is simply a mixture of web standards (HTML, CSS, JavaScript,
etc.) and Java code.

Next, run the application and relevant operation and click the Insert button to see the new insert
screen with the custom text added.

This is a very simple change of the insert JSP that merely adds text to show the basic process
behind overriding a certain operation or process with a new custom JSP. Many more examples
and advanced subjects will be provided in the following sections.

3.1. How to Develop JSP’s

JSP development requires expertise in Java, JSP, and HTML technologies. JSP’s can be
developed with tools as simple as Notepad (or any text editor) or using more robust editors such
as WebSphere Studio or Eclipse. If you are familiar with Eclipse or Websphere, we recommend
either one (PlanetJ uses MyEclipse in-house). Both of these development environments are very

powerful but have a large learning curve, especially Websphere. For simple customizations,
Notepad will work just fine.

Developing with Notepad is as simple as copying an existing file and changing the text to
include any customizations. JSP’s must be compiled prior to use. Application Servers such as
Tomcat and WebSphere can be configured to automatically compile JSP’s when they are
referenced. In Tomcat, the default is to compile. This means you can drop your new JSP into
your webapp folder and Tomcat will compile it for you when you first start it. For more
information, refer to the Tomcat optimization paper.

3.2. WOW JSP Layout

A “template” controls the general layout of WOW applications. The template brings together the
various JSP components. Below are two of the more common templates:

Left-hand TOC Layout:
…dataengine/application/jsp/dea_template.jsp

“Header”
…dataengine/application/jsp/dea_header.jsp

TOC
…dataengine/application/
jsp/dea_toc.jsp

“Results”
…dataengine/application/jsp/dea_results.jsp

“Footer”

Top Navigation Layout:
…dataengine/themes/default_theme/jsp/tab_template.jsp

“Header”
…dataengine/themes/default_theme/jsp/header.jsp

http://www.planetjavainc.com/wow_docs/Optimize_Tomcat_form.htm

“Navbar” - …
dataengine/themes/default_theme/jsp/dropDownNavBar.jsp

“Body”
…dataengine/application/jsp/dea_results.jsp

“Footer”

These files are found in the “context” of the web application server (ex. <Tomcat>/wow64/).

3.2.1. Specifying Custom JSP’s

When creating custom JSPs, copy the associated WOW file or use an existing “template” JSP
provided with WOW. All sample JSP’s will be located in
<Tomcat>/webapps/wow64/user/samples/jsp. The JSP can be added copied it into your file
structure such as <Tomcat>/webapps/wow64/user/companyname/jsp. When a custom JSP is
ready for use, it can be specified as shown below:

JSP’s Specified at the Application Level
At the application level you can specify a JSP that creates a template of how the application will
look and react. For example, some of the JSP’s that are provided allow the user to use portals
where different operations run all at the same time but in different screens. Grab these from a
drop-down list shown below or input your own:

JSP’s Specified at the Operation Level
At the operation level there are a few ways to specify a JSP depending on what the JSP will be
overriding or taking the place of. For example, if changing the look of the operation or its
actions, set the custom JSP in the Advanced :: JSP File section and set the URL
“/user/samples/jsp/example_single_row.jsp” as shown in the following screenshot:

Another way that custom JSP’s are utilized at the operation level is to customize the screens
associated with specific actions performed on an operation’s data. For example, to customize the
print, insert, copy, view and delete JSP’s that are automatically controlled by WOW, find out
which JSP is being called when each action is performed. Copy it and make any desired changes
like tests, add-ons and/or comments. Also, look through the ready-made examples provided in
the <Tomcat>/webapps/wow64/user/samples/jsp folder. Once you have created the custom JSP,
look in the operation’s Properties field and find that action’s URL input area (ex. Insert:;) and
input the path of the new JSP. The following screenshot demonstrates this.

In this example, there is an override of the copy action’s JSP, which is called the InsertAndCopy
action.

3.2.2. Including Information From Signed-On User

If the user signed on with an Authentication Operation, they can access and include user
information in any JSP.

Code Changes Needed for the JSP
In the custom jsp file that is displayed after the user signs-on, add something similar to the
following line to create an instance of a Sign-On Receipt that holds the user’s information.

SignOnReciept testSignOnReceipt = new DataEngineManager.getUser(request);

String userid = testSignOnReceipt.getUserId;

The SignOnReceipt object (testSignOnReceipt) contains Java code that grabs data from the user
row after they sign on. The getUserId method is then called to retrieve the User Id field from that
user row.

Now, add HTML code similar to the following to display the User Id in your JSP.

<table><tr><td>Welcome, <%= userid %> </td></tr></table>

Below is an image of this custom JSP. It shows a small “Welcome” box in the upper left corner
of the application, telling the user who they are currently logged onto the system as.

3.2.3. Key Components of a Custom JSP

The following is a list of some of the key components that compose a typical custom jsp file:

Import statements
The first component of a JSP is to import any necessary code that is used within the JSP. For
example, the planetj.magic project is needed for creating a magic request object:

<%@ page import="planetj.magic.*" %>
<%@ page import="planetj.dataengine.*" %>
<%@ page import="planetj.database.field.*" %>
<%@ page import="planetj.dataengine.operation.*" %>
<%@ page import="planetj.dataengine.display.*" %>
<%@ page import="planetj.dataengine.sqloperation.*" %>
<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page import="java.math.*" %>
<%@ page import="planetj.database.*" %>
<%@ page import="planetj.html.*" %>
<%

Note: ‘<%’ designates the code that follows is java. ‘%>’ designates the code that follows is
HTML.

Output a Single Row (Record)
To display a single row in your custom JSP, call an external method to read a single row.
Methods for reading a row are mostly comprised of an SQL select statement. The
generateDetails method will dynamically build HTML containing data from the row and the
corresponding field labels.

HTMLRowDetails detailGenerater = new HTMLRowDetails();
detailGenerater.setUpdateable(false); // For display only
Row row = null; // Holds the row (record)

/***/
/* Display a row */
/***/
row = MyJavaClass.getDataRow(); // Read the row
if (row != null) { // A row was found?

// Write the row
out.println(detailGenerater.generateDetails(row, request, response));

}

Output a RowCollection (A Group of Rows)
To display a row collection in your custom JSP, call an external method to read a row collection.
Methods for reading row collections are mostly comprised of an SQL select statement. The
generateDetails method will dynamically build HTML containing data from each row and the
corresponding field labels.

/***/
/* Display a Row Collection */
/***/
HTMLRowDetails detailGenerater = new HTMLRowDetails();
Row row = null; // Holds the row (record)
RowCollection myRC = MyJavaClass.getAllDataRows();
if (myRC != null && !myRC.isEmpty()) {

// loop through rows to display
int size = myRC.size();

 for (int i = 0; i < size; i++) {
 // get next location
 row = myRC.getRow(i);

out.println(detailGenerater.generateDetails(row,
request,
response));
 }
}

Sample Method to Return a Single Row

/**
 * Get a Row for this file.
 */
public static Row getDataRow(String id) throws CMException {

Row row = null;
SQLContext context = new SQLContext(“MYCONNECTION”);
context.setRowClass(Row.class);
context.setSQL(

"SELECT * FROM MYLIB.MYFILE WHERE FIELD1 = ‘" + id + “’”);

row = DataEngine.getRow(context);

return row;
}

Sample Method to Return a Row Collection

/**
 * Get a RowCollection populated with all records for this file.
 */
public static RowCollection getAllDataRows() throws CMException {

RowCollection rc = null;
SQLContext context = new SQLContext(“MYCONNECTION”);
context.setRowClass(Row.class);
context.setSQL("SELECT * FROM MYLIB.MYFILE");

rc = DataEngine.getRows(context);

return rc;

}

3.2.4. Detailed Example of Custom JSP

Custom Detail Display JSP
When looking at a results table in WOW, clicking on a ‘View Record’ icon () normally
displays the data of that specific row:

However, it is often necessary to customize this view and show different details of the row
(maybe even pictures, links to more information, etc.). In this example, a new Details Display
JSP will be created that shows an employee’s information along with an image and information
about that employee’s department. The picture will also link to the employee’s resume. To do
this, create a new JSP called custom_detail_display1.jsp.

{!------------- JSP code needed for above example ---------------}

Customized Result Page JSP
Often times it is necessary to created a custom result page for your operations. This can be done
rather easily by creating a JSP to control your results. In this example, a new Result Page JSP
will be created that shows results from multiple tables (and multiple operations) on the same
screen. On the left side of the screen we'll show the employee profiles, including images, while
in the center body of the page we'll show departmental information. The results page will look
something like this:

To make your results screen turn out something like this, we have to create a new JSP file. The
example JSP will sook something like this (notice that when we get an operation we are getting it
by selecting the operation with a certain usage id, in this case 5000):

/***/
/* example_print1.jsp */
/***/

<%@ page import="planetj.dataengine.application.*" %>
<%@ page import="planetj.dataengine.operation.*" %>
<%@ page import="planetj.dataengine.display.*" %>
<%@ page import="planetj.dataengine.*" %>
<%@ page import="planetj.database.*" %>
<%@ page import="planetj.magic.*" %>
<%@ page import="java.util.*" %>

// Get current executing Contesxt
ExecutingContext ec = DataEngineManager.getCurrentExecutingContext(request, response);

// Get Current Application
Application app = DataEngineManager.getCurrentApplication(request);

// Get Operation from usage id set on operation
Operation employeeOp = app.getOperationByUsageId(5000, ec);

// Execute the department Operation and grab all rows
RowCollection employeeRC = (RowCollection) employeeRC.execute(ec);

boolean hasData = employeeRC != null && employeeRC.size() > 0;
if(hasData) {
// Create and Iterator to step through rows.
Iterator itr = employeeRC.iterator();
Row row = null;

}
else {

<div> No Result Found </div>
}

<td>
<%= HTMLField.appendDisplayValue(row.getField(“empNo”), null, request, response); %>
</td>

<!- - include the normal WOW Results - ->
<jsp:include page=”/dataengine/jsp/default_result.jsp” flush=”true” />

<table>
 <tr>
 <td> Result of 1st Operation </td> <td> Result of 2nd Operation </td>
 </tr>
</table>

<td width=”30%”> Result of 1st Operation </td> <td width=”70%”> Result of 2nd
Operation </td>

The next step in creating an operation with a custom result page is to create the actual operations
that are required to create the results. The first operation we will create is the operation we are
grabbing by usage id number.

As you can see in the above screen shot (in the operations Advanced section) there is a field
called Usage Id. You can set this operation’s usage id here. Once you have set any operations
Usage Id you’ll be able to access this method by simply entering its usage id.

The next step to creating the custom result page is to create another operation that you will use to
associate the JSP to the result page. To do this, create a new operation in your WOW Builder.
For this example we made a SQL operation with the code:

SELECT * FROM PJDATA.DEPARTMENT

Then, in the 'Advanced' section of the Builder, under 'JSP File' select the bottom radio button and
enter the complete path of your results jsp and hit enter.

Now run the application and check the results. The result should be similar to the screenshot
below, with the results of 2 different queries shown on the same screen. The left side is showing
the results of the operation created with the usage id set (in this case set to 5000) while the right
(or center body) of the page is showing the results of the operation that you associated the JSP
with.

As you can see, the style of the page looks exactly the same as a regular WOW operation. This
is fully customizable and can be edited by using CSS.

Customized Print Page JSP
When you view a result set in WOW and click on the print icon () to print those records, by
default WOW will render a printable page that looks very similar to the result set page. This may

not always be what you want though and may not give the user all the information that is needed
on the print page. Here is an example JSP that overrides the original print JSP and puts in the
company’s logo, date, and company name on the print page.

/***/
/* example_print1.jsp */
/***/

<%@ page import="planetj.dataengine.*" %>
<%@ page import="planetj.database.*" %>
<%@ page import="planetj.html.*" %>
<%@ page import="java.util.*" %>
<%@ page import="java.text.*" %>

<% RowCollection rc = (RowCollection)
request.getAttribute(IDataEngine.ROW_COLLECTION);
Date date = new Date(System.currentTimeMillis());
SimpleDateFormat sdf = new SimpleDateFormat();

HTMLTable results = null;

if (rc != null) {
results = new HTMLTable(IDataEngine.ROW_COLLECTION);

}

 if (results != null) {
results.setAllRowFunctions(false);
results.setAllTableLinks(false);
results.setDisplayGrid(false);
results.setSelectionType(HTMLTable.NOSELECTION);
results.setDisplayNextAndPrevious(false);
results.setIgnoreRowCollectionProperties(true);

%>
<table>

<tr>
<td>

<table cellpadding="0" cellspacing="0" border="0" width="100%">
<tr>

<td rowspan="3">
<img src="user/samples/images/PJEmailLogo.jpg"

alt="PlanetJ Corporation">
</td>
<td align="right">

<%= rc.getTitle() == null ? "" : rc.getTitle()%>

</td>

</tr>
<tr>

<td align="right">
<% sdf.applyPattern("EEEE', 'MMMM' 'dd', 'yyyy"); %>
<%= sdf.format(date) %>

</td>
</tr>
<tr>

<td align="right">
PlanetJ Corporation

</td>
</tr>

</table>
</td>

</tr>
 <tr><td><hr /></td></tr>

<tr>
<td>

<%= results.generateTable(rc, null, request, response) %>
</td>

</tr>
</table>
<% } else { %>
<table>

<tr>
<td>

No results to display.
</td>

</tr>
</table>
<% } %>

/***/
/* end example_print1.jsp */
/***/

After creating the JSP, override the operation’s default print page by adding the URL of the JSP
to the printURL property in the Properties field (see following screenshot). This will direct
WOW to use this JSP for this operation when the print button is clicked.

Now run the application and then the operation. Click on the print icon and see the new print
page.

All of the sample JSPs referenced in the Programmer’s Guide can be found in the
<Tomcat>/webapps/wow64/user/samples/jsp folder. Copy them and put them under your own
user folder.

3.2.5. Adding a Button to a Custom JSP

To add a button to a custom JSP, a magic request must be implemented. In addition to changes
to your custom JSP, it is necessary to create a magic request object (java file) which will be
invoked by the new button/magic request. In this example, the name of the java source file will
be called MyRequest.java and will be located in com.mypackage.

Code Changes Needed for the JSP
In the custom JSP file, add something similar to the following line to create an instance of the
request object. The Request object (myRequest) will contain java code to be run when the
button is pressed. The first parameter (“RequestName”) in the request constructor call is simply
a name given for the magic request. The new JSP file should be located in the JSP directory
(usually under a user folder).

com.mypackage.MyRequest myRequest =
new com.mypackage.MyRequest("RequestName",request,response);

Add HTML code similar to the following to add the new button. The button definition
references the newly created request object as a parameter of the performMagic invocation.

<input type ="button" name="mybutton" value="Button Text"
onClick='performMagic("<%= myRequest.getKey() %>")' />

Request File
The java class file (MyRequest) will contain the code that is run when the magic request button
is clicked.

package com.mypackage;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import planetj.magic.*;

/*
 *===
 * Magic Request code
 *===
 */

public class MyRequest extends MagicRequest {

 // Constructor called when object is created.
 public StatementsSaveRequest(String pId,

HttpServletRequest request,HttpServletResponse response) {

super(pId, request, response);

}

 // Executed by the magic request button defined in the JSP
 public IMagicRequest execute(HttpServletRequest request,

HttpServletResponse response, DataEngineServlet servlet)
throws CMException {

// Add code to be run when the button is pressed.

return this;
}

}

3.3. Controlling Row Colors Programmatically

Controlling the color of rows presented in a table is often necessary. For example: making
“overdue” to-do rows show up as red and making “due today” tasks show up as yellow. Using
colors provides visual feedback to end users. Using standard WOW supplied CSS, it is possible
to set the row color used for odd and even rows.

To programmatically control the background color of a Row, use the following steps:

1. Create a Row subclass of WOW’s planetj.dataengine.Row
2. Implement the method “getRowDisplayAttributes()“ in the new Row subclass.
3. In this method, implement whatever logic is necessary and return the CSS class name that

will ultimately control the color of the row. The example below uses the class name
“redRow”.

4. Once the Row subclass is complete, assign this row subclass to the authentication
operation.

5. Run the application to test the logic.

GetRowDisplayAttributes() {
// Make priority 1 items red
if (getValueAsInt(“priority”) == 1){

return “redRow”; }
else {return null;}

}
This example method will set append the returned CSS class to the HTML row’s <tr> class
attribute. Be sure to add the new CSS style class to one of your CSS files.

4. Business Programming With WOW
The following sessions provide examples and pointers for implementing common business tasks
using WOW APIs along with the WOW Builder.

4.1. Subclassing the WOW “Row” for Data Validation

A Row or record represents a set of fields returned from an SQL query. To enable custom
validation, the user can create a subclass of the WOW supplied “Row”. Row methods are then
overridden allowing the WOW programmer to customize data validation and behavior for insert,
update and delete.

Here is a sample Row subclass containing one of the more commonly overridden methods:

public class MyRow extends Row {
/**

* This method allows for altering the current row before an insert is performed.
* The citystate field requires that the city value (chars 1-28) and the state
* abbreviation (chars 29-30) be concatenated into a CHAR 30 value before insertion.

*/
protected void preInsert(ExecutingContext exContext) throws CMException {

super.preInsert(exContext);
setCityStateValueAsCombinedField(exContext); // Combines fields

}

}

4.2. Work Flow

Work flow may require programmatic control in terms of what the next completed operation
should be. For example, an international flight may require different sequence of steps then
domestic. If an insurance quote is inserted and it is more than 10,000,000 then it requires
additional info, etc. To accommodate these advanced work flow needs, the WOW Java based
framework can be overridden allowing you to control the exact flow. The logical place to allow

control is after Rows are inserted, updated, and deleted. This can be easily accomplished by
overriding the appropriate Row methods. To programmatically change the next operation to be
run, override Row.getNextOperationToRun(Operation, ExecutingContext) and return the number
of the operation you want to run. NOTE: This requires the user to have Java skills and be familiar
with the WOW Dataengine API.

In addition, to make WOW programming easier, new methods will be added to Row to hide the
complexity of the Row, RowCollection, Operation interaction with navigation and the JSPs that
will display them.

Low Level Design

New Methods

Method Name Class Comments
isWorkFlowHandler() Row Returns false by default. Subclasses return

true if they will control the application
flow. Requests will be able to ask Rows
and then if the Row handles flow then the
request will not forward to any JSPs.

openFor(MODE,LayoutProp) Row This method was created to simplify the
user’s job when opening a Row for display.
This method will set keys and objects in the
session, request, and navigation and then
forward control to the appropriate JSP for
UI handling. Mode represents the type of
open for example (DISPLAY, EDIT)
LayoutProperties allows the users to set
titles, footers and control other UI elements
for this particular UI display instance.

getJSPFor(MODE) Row Allows Rows and subclasses to specify
what JSP should be used when opening this
Row in the supplied Mode. A particular
Row may always want to open with a
special JSP. Default to the dataengine
supplied default JSPs.

openForExecution(LayoutProp
)

Operation Allows programmers an easy way to say
execute this operation. The operation is
then smart enough to know what JSP to use,
etc. This method sets up all needed objects
in navigation, session, and request.

Example Work Flow Scenario:

1. The programmer will override Row.insert or Row.update
2. After a successful or failed insert or update, the programmer may want to direct flow to

another Row or operation. For example:

Public int insert() {

super.insert();

Row nextWorkFlowRow = DataEngine.getRow(“select * from x.y where this = that”);

LayoutProp.setTitle(“Next you must edit your profile to add your VISA number”);
// This will cause the row to be opened in Update mode
NextWorkFlowRow.openFor(UPDATE, layoutProp);

}

When that Row is updated, it may direct flow to another operation or Row.

5. SignOn (Authentication) and Usage Logging
Controlling user access to applications often involves complex rules specific to each business.
This may include integration with existing security schemes and databases. Usage of
applications may also want to be tracked for security or usage fee reasons. For example, each
user access to application x is recorded in a file and used for monthly invoices.

WOW provides the basic operations, but cannot generically handle all the custom behavior
required. However, in all cases, WOW can be extended to provide this behavior. The major
steps involved are listed below. The following example and directions apply when an
application is secured using SQL Operation authentication. In this case, the application specifies
“SQL Operation” for the security type and then specifies which Operation provides the
authentication.

1. Create a Row subclass (ex. MySignonRow) of WOW’s
planetj.dataengine.security.http.SignonRow.

2. Implement the method “isOkToSignOn(…..) “ in the new Row subclass.
3. In this method, implement ANY additional logic required to determine access rights as

well as log user access. If the particular user should not have access rights to this
application, an exception should be thrown. For example:

 public boolean IsOkToSignOn(ExecutingContext ec) throws DataEngineException {
 if (MyCustomSecurityManager.isAuthorized(this) { }

else {
 throw new DataEngineException(“You are not allowed in this application”);
 }
 return true; // User is authorized

}

4. Once the Row subclass is complete, create a SignOn operation with:

Operation Type = Authentication

Row Class = com.xxx.MySignonRow

5. Run the application to test the logic.

6. Connections
In order to perform any database operations, you need a java.sql.Connection. The DataEngine
provides support for managing connections using connection pooling. Connection pooling is
implemented in Java and therefore support for this feature is not tied to an application server.

The DataEngine encapsulates a java.sql.Connection into a DataEngineConnection. These
connections are created and managed by the DatabaseManager in the form of connection pools.

6.1. Connection Pooling

DataEngineConnectionPools are managed by the DatabaseManager and can be referenced by
their connection alias. DataEngineConnectionPools are based off of DBConnectionBroker,
which is a freeware JDBCConnection pooling class available from www.javaexchange.com.

6.1.1. See If Connection Pool Exists

The DatabaseManager can be used to see if a connection pool already exists for a given
connection alias. Calling doesConnectionPoolExist(String) and specifying the connection alias
will return true if the connection pool already exists:

if (!DatabaseManager.doesConnectionPoolExist(“MYCONNECTION”)) {
DatabaseManager.createConnectionPool(driver, system, user, password,
1, 15, connRecreateSeconds, orphanTimeOutSeconds);

}

6.1.2. Creating a Connection Pool

Parameters Required to Create
The following parameters need to be supplied in order to create a DataEngineConnectionPool:

• JDBC driver
• URL of the server
• alias the connection pool will use
• user login name
• user password
• minimum number of connections to create upon pool creation
• maximum number of connections the pool allows
• number of seconds before the pool cleans up old connections
• number of seconds a connection is allow to be held for before it is reclaimed

http://www.javaexchange.com/

Methods Called to Create
The DatabaseManager has five methods that can be used to assist in creating
DataEngineConnectionPools. They are all called createConnectionPool(…) and each takes
different parameters.

1. One takes in all 9 of the above mentioned parameters needed to create a connection pool.

2. Two others take almost all of the parameters with the exception of the connection’s url and
the alias. These are replaced with a DBSystem object (see Creating a DBSystem). The prior
method taking all 9 parameters internally creates the DBSystem object .

3. Another method takes in the connection alias of the connection pool to create and the
connection alias of the DataEngine Connection table which is used to retrieve all parameters
necessary to create the DataEngineConnectionPool. Note: This only works if the Connection
table exists and the table contains a record for the given connection alias.

4. The last method takes in a ConnectionRow containing all the information necessary to create
the connection pool. A ConnectionRow is a record from the Connection table; however, it
can be created itself (see Creating a ConnectionRow) without reading from the database by
specifically setting its values and passing it to the DatabaseManager.

6.1.3. Restarting a Connection Pool

A DataEngineConnectionPool can be restarted by calling its reconnect() method. This gives any
connections in use 10 seconds to be freed (see Freeing a Connection) before the connection pool
is shut down and then restarted. If 10 seconds is not long enough, the method reconnect(int) can
be called. This method set the number of milliseconds to wait before shutting down and
restarting the connection pool.

DataEngineConnectionPool.reconnect(10);

Similarly, the DatabaseManager provides the same methods to restart connection pools except
the DatabaseManager methods also require the DataEngineConnectionPool’s connection alias to
be specified.

DatabaseManager.reconnect(alias);

6.1.4. Shutting Down a Connection Pool

A DataEngineConnectionPool can be shut down by calling its destroy() method. This gives any
connections in use 10 seconds to be freed (see Freeing a Connection) before the connection pool
is shut down. If 10 seconds is not long enough, the method destroy(int) can be called. This
method takes the number of milliseconds to wait before shutting down the connection pool.

DataEngineConnectionPool.destroy();

Similarly, the DatabaseManager provides the same methods to shut down connection pools
except the DatabaseManager methods also require the DataEngineConnectionPool’s connection
alias to be specified.

DatabaseManager.destroy(alias);

6.2. Getting and Using a Connection

Connections can be retrieved from their connection pool by calling getConnection() or through
the DatabaseManager by calling getConnection(…) and passing in the connection alias of the
DataEngineConnectionPool. Note: When a connection is retrieved from a
DataEngineConnectionPool it should be “freed” (see Freeing a Connection) when it is no longer
used so that the connection can be used by someone else or for another operation.

Connection c = DatabaseManager.getConnection("MYCONNECTION");

In many cases, instead of directly obtaining a connection, only the connection alias (of the
DataEngineConnectionPool you wish to connect to in order to carry out an operation) is needed.
In these cases, the DataEngine will retrieve (and free) the connection itself.

6.3. Freeing a Connection

After connections are retrieved and used they should be returned or freed up for the next user’s
use. To free connections, you can use the DataEngineConnectionPool by calling
freeConnection(…) and specifying the Connection you wish to free.

The DatabaseManager can also be used with the same method call and by also specifying the
connection alias of the DataEngineConnectionPool you wish to free the connection from. The
latter method call on the DatabaseManager saves time in that it does not need to get the
connection alias from the connection.

DatabaseManager.freeConnection (connection);

6.4. Transaction Support

Connections can also be used for database transaction support using a single connection for
multiple operations. First, obtain the connection, set its autocommit to false, perform operations
on the connection, commit the connection, and then free the connection.

Connection conn = DatabaseManager.getConnection(“MYSYSURL”);
conn.setAutoCommit(false);
row1.insert (conn);
row2.update (conn);
row3.delete (conn);
conn.commit();
DatabaseManager.freeConnection(conn);

7. DataEngine

7.1. Executing Statements

The methods provided by DataEngine do the same thing as what could be done with regular SQL
statement objects. The advantage to using the DataEngine, however, lies in what is done
underneath the covers. If you make a call to a DataEngine.getRows() method or
DataEngine.getRow() method, you don’t need to go through all the hassle of getting a
connection, creating a statement, executing the statement, error handling if something goes
wrong while executing, parsing through ResultSets, etc. Instead, DataEngine handles all of this
internally. For queries, a RowCollection object is returned than can be easily accessed, reused,
manipulated, updated, and displayed in a variety of formats and/or technologies (Swing, HTML,
PDF, etc).

7.1.1. Queries (Selecting Records)

A select statement can be executed by making a call to the DataEngine using the getRow() or
one of the getRows() methods. These methods return a RowCollection object that contains one
Row object for each record in the database that meets the criteria of the select statement.

// SQLContext
DataEngine.getRow(SQLContext)
DataEngine.getRows(SQLContext)

// Connection, SQL String, and optionally a Row subclass
DataEngine.getRows(Connection, String)
DataEngine.getRows(Connection, String, Class)

// System alias, SQL String, and optionally a Row subclass
DataEngine.getRows(String, String)
DataEngine.getRows(String, String, Class)

For example, the following method would return all the records in the table users in the library
mylib from the database for the specified connection alias.

DataEngine.getRows (sysAlias, “select * from mylib.users”);

If you would like to have the results be more intelligent and meaningful, then an SQLContext
should be used. An SQLContext has a series of attributes and properties that can be set (see the
SQLContexts section for more details on how to create and modify).

Also, if you wish to just receive a ResultSet rather than a RowCollection, the following method
can be used. It requires that an SQLContext be passed in as a parameter.

DataEngine.executeQuery(SQLContext context)

7.1.2. Updates

For executing other SQL statements, the DataEngine provides several executeUpdate() methods.
These methods work in a similar fashion as Statement.executeUpdate().

// SQLContext
DataEngine.executeUpdate (SQLContext)

// Connection, SQL String
DataEngine.getRows(Connection, String)

// System alias, SQL String
DataEngine.getRows(String, String)

For example, the following method would delete all records in the given table.

DataEngine.executeUpdate(“myconnectionalias”, “delete from mylib.users”);

7.1.3. Using Prepared Statements

See Use Caching in the SQLContext section.

7.2. Getting Database Objects

7.2.1. Retrieving All Libraries

The static method getAllLibraries(DBSystem) on the DataEngine can be used to retrieve a Map
of the Libraries for a DBSystem keyed by library name. If a Connection is not specified, then
the Library objects are created for the given DBSystem by obtaining a connection for the
DBSystem’s connection alias.

7.2.2. Retrieving All Tables

The static method getAllTables(Library) on the DataEngine can be used to retrieve a Map of the
Tables for the given Library keyed by table name. If a Connection is not specified, then the
Table objects are created for the given Library by obtaining a connection for the Library’s
DBSystem’s connection alias.

8. SQLContext
An SQLContext contains information about an SQL command, including parameters on how to
run the command, the command itself, and how to organize the command's results. A context
can be created and used to retrieve a RowCollection for displaying or manipulating data.

8.1. Creating an SQLContext

A context can be created by invoking the SQLContext’s constructor with or without the system
alias of the connection to use for execution. If the alias is not specified in the constructor, it will
need to be set before executing the context’s SQL statement.

SQLContext context = new SQLContext();
SQLContext context = new SQLContext(String);

8.2. SQLContext Attributes

An SQLContext contains many different attributes and properties that can be used to provide
greater functionality when working with results. Most attributes and/or properties of an
SQLContext are optional with the exception of providing its SQL String and connection alias or
Connection to use when executing that SQL. If you don’t specify a value for a property, then the
SQLContext’s default value for that property will be used.

8.2.1. Row Count

The context’s row count is the number of Rows that are retrieved during an execution of an SQL
query statement returned in the form of a RowCollection. This value defaults to
SQLContext.ALL_ROWS, which means all Rows will be retrieved that meet the search criteria.

setRowCount(int);

Additionally, the following method can be used to retrieve the current Row count of the
SQLContext.

getRowCount();

8.2.2. Set RowCollection Subclass (Type of RowCollection)

If you want the RowCollection (results) being returned to be of a certain type of RowCollection,
specify the value on the SQLContext. This is used in a situation where you have a
RowCollection subclass that contains methods that perform actions or tasks specific to a query.
For example, a ReportRowCollection is a RowCollection that has a method for generating
ReportRows when it is displayed. This value defaults to RowCollection.class.

context.setRowCollectionClass(RowCollectionSubClass.class);

Additionally, the following method can be used to retrieve the current RowCollection subclass of
the SQLContext.

getRowCollectionClass();

8.2.3. Set Row Subclass (Type of Row)

If you want the RowCollection (results) being returned to contain a certain type of Row, specify
the value on the SQLContext with the following method. This is used in a situation where a
Row subclass contains methods that perform actions or tasks specific to data from the table or
tables being read. This value defaults to Row.class.

context.setRowClass(RowSubClass.class);

Additionally, the following method can be used to retrieve the current Row subclass of the
SQLContext.

getRowClass();

8.2.4. Set System Alias

The context’s system alias is the alias of the connection pool from which to get a connection for
executing any statements. This value is required if a Connection is not specified.

context.setSystemALias(String);

Additionally, the following method can be used to retrieve the current system alias of the
SQLContext.

getSystemAlias();

8.2.5. Set Connection

If you currently already have a connection and wish to have the SQLContext execute using that
connection, set it by using the following method. This value is required if the connection alias is
not specified.

setConnection(Connection);

Additionally, the following methods can be used to retrieve the current Connection to use for
executing the SQLContext’s SQL String. The Boolean parameter specifies whether or not to
create the Connection if it does not already exist.

getConnection();
getConnection(boolean);

8.2.6. Set SQL

The context’s SQL is the String to be executed when requested. The given String should be in
proper SQL format. This value is required.

context.setSQL (“select * from mylib.users”);

Additionally, the following method can be used to retrieve the current SQL String set in the
SQLContext.

getSQL();

8.2.7. Set AutoRefresh

The auto-refresh attribute specifies whether or not a RowCollection retrieved via an SQLContext
should automatically refresh itself when its data becomes stale. When a RowCollection contains
data from a table, and the DataEngine is used to update that table, then that RowCollection will
refresh itself from the database automatically (if the auto-refresh property is true). If the table is
updated outside of the DataEngine, the RowCollection will not refresh itself.

By default, this value is true.

8.3. SQLContext Operations

8.3.1. Adding/Removing Listeners

If a listener is added to an SQLContext it will be informed when the SQLContext is used to run
an SQL statement. Usually, listeners are used when the statement is being run in the background
(see Run in Background above). If the statement is not run in the background, the listeners are
all informed of the result before the DataEngine method that caused the statement to run returns.
Also the listener must be of type IDataEngineListener. Below are the two methods on an
SQLContext used to add and remove listeners.

addListener(IDataEngineListener);
removeListener(IDataEngineListener);

To see if a context has listeners, the following method can be used.

hasListeners();

8.3.2. Cloning an SQLContext

Cloning might be used in a situation where you already have an SQLContext with several
attributes already set. Rather than creating a new one exactly the same except with a different
system alias or SQL String, the existing SQLContext can be cloned and the new properties set.

SQLContext clone = context.cloneContext();

The SQLContext’s clone() method could be called as well. Internally it calls cloneContext() and
returns the SQLContext as an Object.

8.3.3. Use Caching

By default, caching is not used. Accessing the database every time for a given SQL query could
cause performance issues. This is where the caching of queries can be useful. You can specify
on the SQLContext if you would like to check to see if results already exist for the given SQL or
if you would like to cache the results retrieved from executing the SQL. There are several
different caching states provided by the SQLContext that can be accessed as public static
variables.

// Does not provide any caching support (SQLContext defaults to this)
SQLContext.CACHING_NONE

// If results have already been cached, use them
SQLContext.CACHING_CHECK

// Cache results after retrieval for future reference
SQLContext.CACHING_STORE

// Provides the caching functionality of both check and store
SQLContext.CACHING_CHECK_AND_STORE

The following methods can be used to set and retrieve the current caching state of the
SQLContext. Setting the caching level sets the caching state directly, but check cache and store
into cache attributes can also be set and retrieved individually.

// Setting or retrieving caching state
setCacheLevel(int)
getCacheLevel()

// Set or retrieve whether or not to check cache for existing results
setCheckCache(boolean)
isCheckCache()

// Set or retrieve whether or not to cache results after retrieved
setCacheResults(boolean)
isCacheResults()

8.3.4. Using Prepared Statements

The DataEngine supports the use of prepared statements. If you wish to use a prepared
statement, pass the SQL to the setSQL() method of an SQLContext as usual, and set the
UsePreparedStatement property to true. By default, no Statements are prepared. This value
should only be set to true when an SQL String containing a prepared statement has also been set.

SQLContext context = new SQLContext().setSystemAlias (“mySystem”);
context.setSQL (“select * from planetj.customers where id = ?”);
context.setUsePreparedStatement (true);

You can use the setPreparedStatementValue() value method to provide values for the parameters
in the prepared statement.

context.setPreparedStatementValue (0, new Integer (52));

When the SQLContext in the above example is passed to the DataEngine.getRows() method, the
query will run in a prepared statement. First, the DataEngine will look for a connection in which
the SQL statement has already been prepared; if such a connection exists, and is available, then
that connection will be used to execute the statement. If no such connections are available, the
statement will be prepared and executed in the connection that has the fewest prepared
statements.

The maximum number of prepared statements that can exist in a single connection is specified
by the MaxPreparedStatements property of the DataEngine. If a statement is prepared using a
connection that already has the maximum number of prepared statements, the prepared statement
which has been unused for the longest amount of time is closed, thus preserving the number of
prepared statements in the connection.

8.4. Executing the SQLContext’s SQL

Static methods in DataEngine have been provided for executing the context’s SQL after it has
been created, modified, and prepared.

The following methods can be used for executing a query.

// Retrieve a RowCollection
DataEngine.getRows (SQLContext)

// Retrieve a single Row
DataEngine.getRow(SQLContext)

// Retrieve a ResultSet
DataEngine.executeQuery(SQLContext)

The following method can be used for executing other statements.

// Executes the statement
DataEngine.executeUpdate(SQLContext)

9. RowCollections
A RowCollection is a group of Row objects, representing rows in the database. Typically, a
RowCollection is obtained by invoking one of the getRows() methods of the DataEngine class.

Important methods of a RowCollection include:
 getRowCount() which returns the number of Rows in the RowCollection
 getRow(int) which returns the Row at the specified index.
 GetRows() which returns a list of Rows

9.1. Creating a RowCollection

In most cases, the DataEngine will create and populate RowCollections for you. However, you
can create a RowCollection and add Rows to it from a ResultSet using the addRows(int,
ResultSet) method. When invoking this method, you must specify the number of rows from the
ResultSet to add:

RowCollection rc = new RowCollection();
rc.addRows (numberOfRows, myResultSet);

You can also specify which row of the ResultSet should be the first row added to the
RowCollection with the addRows(int, int, ResultSet) method:

RowCollection rc = new RowCollection();
rc.addRows (firstRow, numberOfRows, myResultSet);

9.2. RowCollection Operations

9.2.1. Getting Next or Previous RowCollection

In many cases, a RowCollection contains a subset of the rows that were returned from a query.
The number of Rows that you want in a RowCollection can be specified with the setRowCount()
method of the SQLContext class. In this example, the returned RowCollection will have no
more than 20 rows:

SQLContext context = new SQLContext();
context.setRowCount (20);
context.setSQL (“select * from mylib.users”);
context.setSystemALias (“mySystem”);
RowCollection myRowCollection = DataEngine.getRows (context);

If there are more than 20 rows in the users table, the row collection will only contain the first 20
rows. If there are fewer than 20 rows in the table, then the RowCollection will contain all of the
rows.

To check and see if there were more rows returned by the query that were not included in the
RowCollection, you can use the hasNextRowCollection() method. To actually get the next
group of rows, invoke the getNextRowCollection() method:

RowCollection nextRowCollection = null;
if (myRowCollection.hasNextRowCollection())

nextRowCollection = myRowCollection.nextRowCollection();

The “next” RowCollection always contains the same number of Rows that were retrieved into
the original RowCollection, unless there aren’t enough rows in the database.

The hasPreviousRowCollection() and getPreviousRowCollection() methods work in a similar
fashion.

In many cases you will not have to directly invoke these methods – when HTML is generated for
a RowCollection, next and previous links are automatically generated as well. When the user
clicks on these links the DataEngine invokes the appropriate methods for you, and displays the
next or previous RowCollection to the user

9.2.2. Sorting a RowCollection

The most common way to sort a RowCollection is from the GUI using the table header up {▲}
and down {▼} arrows. The up arrow will sort that column in an ascending order; likewise the
down arrow will sort that column in a descending order. Currently this is a magic function (See
Magic Request Sort).

The logic under the covers is pretty basic. Currently the sort works in two different ways. If the
RowCollection is not full, meaning it does not contain the same amount of Rows retrieved from
the database (this is internally called hasNextRowCollection() and/or
hasPreviousRowCollection()), then a sort must be done on the database side. This
involves appending an “order by” statement to the SQL String and re-running the query by doing
a RowCollection.refresh(). Performance is considerably affected due to the IO/database calls.
The other method of sorting is in a memory sort which performs much faster than the database
sort. The internal sort uses the Collection.sort(List, Comparator) method. To sort a
RowCollection, call the following method passing it a String[] of column names to sort by and a
sort order (SortRequest.ASC or SortRequest.DESC).

RowCollection.sort(String[], sortOrder);

Future Sorting Requests
Currently Rows of a RowCollection are sorted by a single column (single level sorting). To
enhance this, we would like to pass in String[] of column names, and sort by the order which the
column names are specified in the Array (i.e. sort by String[0], then sort by String[1] etc…).
The API is currently set up to support this.

9.2.3. Refreshing a RowCollection

From time to time, you may want to refresh your RowCollection to ensure you’re viewing the
latest data. The most common way to do this is from the GUI by clicking on the refresh
pinwheel{ }. This will refresh the display with the values stored in the database. Currently,
refreshing is a magic function (See Magic Request Refresh). Refresh is also done upon sorting
of the RowCollection. Below is the method to invoke if you wish to refresh a RowCollection.

RowCollection.refresh();

9.3. Generating Files From a RowCollection

9.3.1. CSV File From a RowCollection

If you wish to write a table/file out to a file for analysis, it can be painful. How do you do it?
The DataEngine conveniently accomplishes this by writing the data out to a CSV (Comma
Separated Values) file. A CSV file can be read by Excel or many other application to do further
analysis (graphs, charts, etc…). The most common way to write an HTML table to a CSV file is
by clicking on the Excel icon { }. Currently this is a magic function (See Magic Request
CSV/Excel). (See CSVHelper)

In order to write a RowCollection to a CSV file, create a CSVFileDescriptor that defines
attributes about a CSV file.

CSVFileDescriptor descriptor = CSVHelper.singleton().newCSVFileDescriptor();
descriptor.setDelimiter('¤'); // Delimiter default to a comma {,}
descriptor.setFileName("C:\\Temp\\Test.csv");

// If you want to append to an existing CSV file
descriptor.setAppendToFile(true); // Defaults to false

// If you want all the output on a single line
descriptor.setOutputAsSingleLine(true); // Defaults to false

// If you want each new row to begin with a delimiter
descriptor.setLeadingDelimiter(‘×’); // Default to an empty space “”

After your CSVFileDescriptor is all set up, invoke the toCSV() method passing in a Boolean true
if you want to include the column heading as the first row in the CSV file and the
CSVFileDescriptor.

RowCollection.toCSV(includeColumnHeadings, descriptor);

9.3.2. Microsoft Word File From a RowCollection

To produce a Microsoft Word file (.doc) from a RowCollection, click on the Word icon { }.
Currently this is a magic function (See Magic Request Microsoft Word). (See DOCHelper) (See
CSVHelper)

In order to generate the Microsoft Word file (.doc), call the toDOC method of RowCollection. A
CSV file is generated under the covers and passed into word. For more information on
generating a CSV file from a RowCollection See Generating a CSV file from a RowCollection.

RowCollection.toDOC(includeColumnHeadings, descriptor);

9.3.3. XML File From a RowCollection

To view RowCollections data in XML format you can click on the XML icon { }. Currently
this is a magic function (See Magic Request XML). (See XMLHelper)

In order to write a RowCollection to a XML file, create an XMLFileDescriptor that defines
attributes about an XML file.

XMLFileDescriptor descriptor = XMLHelper.singleton().newXMLFileDescriptor();

// to write the XML data out to a file, set a file name
// property in the descriptor. if this file name is set, then the
// RowCollection’s XML data will be output to the file. if no file
// name is set, then it will be output to the browser.
descriptor.setFileName("C:\\Temp\\Test.xml");

After your XMLFileDescriptor is all set up, invoke the toXML() method passing in the
descriptor.

RowCollection.toXML(descriptor);

9.3.4. PDF File From a RowCollection

To view RowCollections data in PDF format you can click on the PDF icon { }. Currently this
is a magic function (See Magic Request PDF). (See PDFHelper)

In order to write a RowCollection to a PDF file, create a PDFFileDescriptor that defines
attributes about a PDF file.

PDFFileDescriptor descriptor = new PDFFileDescriptor();

// to write the PDF data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// RowCollection’s PDF data will be output to the file. If no file name
// is set, then it will be output to the browser’s output stream as shown
// below.
descriptor.setFileName("C:\\Temp\\Test.pdf");

// to display this PDF in a browser using the Adobe Acrobat browser
// plug-in, then set the OutputStream of the descriptor like this.
descriptor.setOutputStream(response.getOutputStream());

After your PDFFileDescriptor is all set up, invoke the toPDF() method passing in a Boolean true
if you want to include the column heading as the first row in the PDF file and the
PDFFileDescriptor.

RowCollection.toPDF(includeColumnHeadings, descriptor);

9.3.5. FDF File From a RowCollection

This is normally used along with a PDF template to plug the FDF data into. (See FDFHelper)

In order to write a RowCollection to an FDF file and display that data in a template, create an
FDFFileDescriptor that defines attributes about an FDF file.

FDFFileDescriptor descriptor = FDFHelper.singleton().newFDFFileDescriptor();

// set the template so the FDF file knows which PDF to open

fileDescriptor.setPDFFileName("http://" + request.getRemoteHost() + ":" +
request.getServerPort() + "/Template.pdf");

// to write the FDF data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// RowCollection’s FDF data will be output to the file. If no file name
// is set, then it will be output to the browser’s output stream as shown
// below.
descriptor.setFileName("C:\\Temp\\Test.fdf");

After your FDFFileDescriptor is all set up, invoke the toFDF() method passing in the descriptor.

RowCollection.toFDF(descriptor);

9.4 Example of a Row Collection Operation

As you know, in WOW you need to create a custom java class for adding additional functionality
to any operation. For this purpose, you always create a new java class and extend it with the
required WOW class. So in a new custom class you can add your specific functionality. You can
extend any class with the RowCollection class. As an example, in the following code we are
creating a new class ‘GoogleEarthRC’ extending the ‘RowCollection’.

public class GoogleEarthRC extends RowCollection {
//class body

}

You can easily add a class within any operation by simply clicking the edit button. Then, in the
Advanced Section under ‘Row Coll. Class,’ you will need to give the complete path of class.
There is no need to type the .class extension, WOW already knows about that.

In the case of a wrong package or class name, WOW will display a Message and indicat the
Error and display the Roll Coll. Class Field like this.

To add the button which will work as a Row Collection action on the screen, you have to follow
these steps:

 On the edit screen of the operation go to the Display Section
In the “Properties” Text Area you can add functionality for different purposes
Here you’ll need to add “Actions{ }” tag behind the “Table Display{ }” tag
Add the following lines in Properties text area

Actions {
type:RC;
show:Google Earth;

}

type:RC; shows that you are adding an action for Row Collection.

show:Google Earth; ‘Google Earth’ will be the label of the button which you want to display
as the Row Collection for table. ‘Show’ is a reserve word for WOW and you can enter any text
which you want to display on the screen as a label of a button.

When you update the operation and run the application now your table will look like following
screen shot.
The new button with the label which you entered in Properties,
show:Google Earth;
will display on the screen. With this button you can add your custom logic in the custom class
which could be applied for all rows of the table.

Now in your newly created custom class you can add your custom logic. To extend the
RowCollection class you’ll have to override the ‘handleAction()’ method.

This method takes a String and ExecutingContext as parameters and returns an Object.

public Object handleAction(String action, ExecutingContext ec) throws CMException {
if ("GOOGLE EARTH".equalsIgnoreCase(action)) {

RowCollection completeRC = super.getCompleteRowCollection();
Iterator itr = selectedRC.iterator();

}
return super.handleAction(action, ec);

}

By editing the operation; in the Display section in Properties text area within the TableDisplay
{ } section you can set “selectionType:multiple”.

By setting the “selectionType:multiple” a check box will be displayed with each row and your
output table will look like following screen shot

You can select multiple rows and click the Row Collection button. In the handleAction() method
you can get the selected rows.

By clicking on the Row Collection button in “handleAction()” method you can get selected rows
with a “RowCollection” class method.

public Object handleAction(String action, ExecutingContext ec) throws CMException {
if ("GOOGLE EARTH".equalsIgnoreCase(action)) {

RowCollection selectedRC = super.getSelectedRowCollection();
}
return super.handleAction(action, ec);

}

9.5 Operation Actions

Similar in appearance to RowCollection actions, Operation actions invoke the
Operation.handleAction() method (instead of RowCollection.handleAction()). Unlike
RowCollection actions which can only appear when a RowCollection is being displayed to the
user, Operation actions can be shown in many more places. Below are some screen shots
showing Operation action buttons (the location name for each of the buttons is shown as text in
the button):

The three screen shots above depict results, details, and execution group screens with action
buttons.

Like a RowCollection action, a single Operation action can be shown in multiple locations. The
following operation property groups create a "My Action" button that appears in 2 places on both

the results and details screen (upper and lower left for the results screen, lower left and to the left
of the buttons for the details screen):

Actions {
type: op;
show: action_name;

}

ActionDescriptor {
 name: action_name;
 actTyp: op;
 loc: bottom left, top left;
 detailsloc: bottom left, buttons left;
 label: My Action;

}

Both of the property groups above are necessary to create an action. The table below lists all the
possible properties and values for the ActionDescriptor property group.

Property Value Description
actTyp COLUMN | ROW | RC | OP Designates the type of action: column, row, row

collection, or operation.
ContextMenu TRUE | FALSE Whether or not the action should be shown in the

context menu, in addition to its other locations.
Defaults to true.

desc text Action description.
detailsLoc BOTTOM LEFT |

BOTTOM RIGHT |
TOP LEFT | TOP
RIGHT | SEARCH
LEFT | SEARCH
RIGHT

Specify the location(s) where the action button will
be generated in the details view. If multiple
locations are used, separate each with a comma.

detailsMode DELETE | VIEW |
EDIT | INSERT | COPY

Designates in which modes to generate the actions
when showing the details screen. If multiple modes
are used, separate each with a comma.

dspType BUTTON | LINK |
CHECKBOX

Specifies one form in which to display the action.

dspOrd integer The display order for this action. Actions with
smaller display orders are displayed before actions
with larger display orders

end group TRUE | FALSE Whether or not this action should end the current
navigation group.

group text The name of the group to which the action belongs
(optional). Separators are placed between different
groups of actions in the action context menu.

imgsrc file path | URL Path to the image to use for the generated action’s
background.

label text The label is the text that appears on the action button
or link.

loc BOTTOM LEFT |
BOTTOM RIGHT |
TOP LEFT | TOP
RIGHT | HEADER |
INLINE | TOOLBAR |
NONE | UNKNOWN |
SEARCH LEFT |
SEARCH RIGHT || RC RC

Specify the location(s) where the action button will
be generated in the results view. If multiple
locations are used, separate each with a comma.

name text Action name.
noSelectionErr
or

text The error message to display when no row is
selected.

target text Target window to load action in.
start group TRUE | FALSE Whether or not this action should start a new

navigation group.
window
properties

property=value,
property=value, etc..

Properties for the new window (only applicable if a
target is specified). For example, toolbar=no or
resizable =yes. See the ‘specs’ parameter at
http://www.w3schools.com/htmldom/met_win_open.asp
for a list of all possible window properties. If
multiple properties are used, separate each with a
comma.

10. Rows

10.1. Row Subclasses

In most cases you will want to create a subclass of Row for each database table in your
application. This allows you to create specific get and set methods for each of the values in the
table, and enables you to add business logic to a Row. When retrieving a RowCollection with
the DataEngine, you can specify the type of Row subclass the RowCollection should contain by
setting the RowClass property of the SQLContext that gets passed to the DataEngine:

mySQLContext.setRowClass (StudentRow.class);
RowCollection rc = DataEngine.getRows (mySQLContext);

A more flexible approach to choosing a subclass of Row is to override the createRow() method
of your Row subclass:

public Row createRow (Row pDefaultRow) throws DataEngineException;

After the DataEngine reads the information from the database Row into a Row object, it invokes
the createRow() method on that Row (passing in that same Row as an argument). Whatever
Row is returned from the createRow method is the one which actually gets added to the
RowCollection. By default, the Row.createRow() method just returns itself, but it can also
examine the data contained in the default Row, and instantiate the correct subclass of Row based

http://www.w3schools.com/htmldom/met_win_open.asp

on that data. The Row.transferDataTo() method can then be used to transfer the data from the
default Row into the new instance of Row and return. In this way, the DataEngine can retrieve a
RowCollection that contains many different subclasses of the Row class.

You can also use an external object (which implements the IRowCreator interface) to create the
appropriate subclass of Row. When an SQLContext has an IRowCreator (specified with the
setRowCreator() method) and that SQLContext is passed to the DataEngine.getRows() method,
then the DataEngine will use the createRow() method of that IRowCreator instead of the
createRow() method of the Row to get the appropriate instance of a Row.

10.2. Creating a Row

New Rows can be created directly by the user or through a RowCollection. It is recommended
that if you have a RowCollection and want to add a Row to it, you should use the
RowCollections’s new row method (this will do everything for you):

rowCollection.newRow() // return a new Row of enclosed Row Class type

Otherwise, you can create a new Row yourself by doing one of the following:

(1) Row row = new Row()
(2) Row row = Row.create(Table)
(3) Row row = Row.create(Table, Class)

Note: If you want to create a subclass of Row, number (3) should be used. Also, if you use
method number (1), keep in mind that in order for the Row to function properly (inserting,
updatinge, etc…) you must set its table [row.setTable(Table)].

Once a row has been created, you can use the populate(ResultSet) method to fill a Row based on
the current row of a ResultSet:

myRow.populate (myResultSet);

The populate method creates and adds fields to a row as necessary, filling in the values of the
fields based on the data in the result set. Alternatively, you could create the field objects
yourself and add them to the row via the add() method:

Field field = Field.create (“myField”, java.sql.Types.CHAR)
myRow.add (field);

For more information about using/creating fields see (Creating Fields).

10.3. Row Operations
10.3.1. Inserting a Row

After a Row has been created or updated, the user may wish to insert a new record into the
database. There are two methods for inserting a Row:

row.insert() // insert row into database
row.insert(Connection conn) // insert row into database

When called, the insert methods build up an SQL statement of the Row’s Fields and their values.

Note: If a row has been updated and you don’t want a new record, then row.update()
should be used.

10.3.2. Updating a Row

When the update method of the Row is called, an SQL update statement is built using the Row’s
Library, Table, updated values, and keys. After the update takes place in the database, the Row’s
current values for its fields (if existing) are set as the new original values. Note: when any of the
Row’s field values are changed, the Row’s current values are changed, while the original values
stay the same. Then, when a successful update has been made to the database, the Row’s
original values are set to the current values.

row.update() // update a row in database
row.update(connection) // update a row in database

The Library and Table are retrieved from the Row. The SQLGenerator generates the set clause
by using the row’s current values (the values needing updating). The SQLGenerator also
generates the where clause by using the row’s key fields.

10.3.3. Deleting a Row

Deleting a Row works similar to updating a Row. When the delete method is called on a Row,
an SQL statement is built using the Row’s Library, Table, and key fields in a similar fashion as
updating.

row.delete() // delete a row in database
row.delete(connection) // delete a row in database

When a row is deleted, it must also be removed from the object it is contained/stored in (e.g. if a
row is contained in a RowCollection, it must also be removed from the RowCollection).

10.3.4. Cloning a Row

Cloning might be used in a situation where two different tables have the same Fields, but
different table names. For example, an item for an order might be in a OrderPending table until
it is processed and then moved to the Order table. To clone a Row all you need to do is call:

Row clone = row.cloneRow() // returns a clone of the row

Both rows point to the same table after the clone. If the row clone is to contain a different table
other than the previous, its set table method should be called:

clone.setTable(newTable) // sets the clone’s table

10.4. Retrieving a Row’s Fields (FieldCollection)

Each Row has a FieldCollection object which contains all the Fields in a given Row. This allows
for retrieval of a Field in two ways. (1) Name, and (2) Index.

getField(String fieldname) // return Field with given name
getField(int index) // return Field at specified index

(e.g. row.getField(“LASTNAME”) – return LASTNAME Field)
(e.g. row.getField(1) – return the first Field in Row)

Note: Fields are indexed in the Row starting at 1 in correlation with SQL indexing.

10.5. Generating Files From a Row

10.5.1. CSV File From a Row

See Also: (Generating a CSV file from a RowCollection)

If you wish to write a Row out to a file for analysis, it can be a pain. How do you do it? The
DataEngine conveniently accomplishes this by writing the data out to a CSV (Comma Separated
Values) file. A CSV file can be read with Excel or some other application to do further analysis
(graphs, charts, etc…). The most common way to write an HTML table to a CSV file is by
clicking on the Excel icon { }. Currently this is a magic function (See Magic Request
CSV/Excel).

In order to write a Row to a CSV file, create a CSVFileDescriptor that defines attributes about a
CSV file.

CSVFileDescriptor descriptor = CSVHelper.singleton().newCSVFileDescriptor();
descriptor.setDelimiter('¤'); // Delimiter default to a comma {,}
descriptor.setFileName("C:\\Temp\\Test.csv");

// If you want to append to an existing CSV file
descriptor.setAppendToFile(true); // Defauts to false

// If you want all the output on a single line
descriptor.setOutputAsSingleLine(true); // Defaults to false

// If you want each new row to begin with a delimiter
descriptor.setLeadingDelimiter(‘×’); // Default to an empty space “”

After your CSVFileDescriptor is all set up, invoke the toCSV() method passing in a boolean true
if you want to include the column heading as the first row in the CSV file and the
CSVFileDescriptor.

Row.toCSV(includeColumnHeadings, csvFileDescriptor);

10.5.2. Microsoft Word File From a Row

To produce a Microsoft Word file (.doc) from a Row, click on the Word icon { }. Currently
this is a magic function (See Magic Request Microsoft Word). (See DOCHelper) (See
CSVHelper)

In order to generate the Microsoft Word file (.doc) you must call the toDOC method of Row. A
CSV file is generated under the covers and passed into word. For more information on
generating a CSV file from a RowCollection (See Generating a CSV file from a Row).

Row.toDOC(includeColumnHeadings, descriptor);

10.5.3. FDF file from a Row

This is normally used along with a PDF template to plug the FDF data into. (See FDFHelper)

In order to write a Row to an FDF file and display that data in a template, create an
FDFFileDescriptor that defines attributes about an FDF file.

FDFFileDescriptor descriptor = FDFHelper.singleton().newFDFFileDescriptor();

// You must set the template so the FDF file knows which PDF to open
fileDescriptor.setPDFFileName("http://" + request.getRemoteHost() + ":" +

request.getServerPort() + "/Template.pdf");

// to write the FDF data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// Rows FDF data will be output to the file. If no file name is set,
// then it will be output to the browser’s output stream as shown below.
descriptor.setFileName("C:\\Temp\\Test.fdf");

After your FDFFileDescriptor is all set up, invoke the toFDF() method passing in the descriptor.

Row.toFDF(descriptor);

10.5.4. PDF file from a Row

To view Row data in PDF format, click on the PDF icon { }. Currently this is a magic function
(See Magic Request PDF). (See PDFHelper)

In order to write a Row to a PDF file, create a PDFFileDescriptor that defines attributes about a
PDF file.

PDFFileDescriptor descriptor = new PDFFileDescriptor();

// to write the PDF data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// Rows PDF data will be output to the file. If no file name is set,
// then it will be output to the browser’s output stream as shown below.
descriptor.setFileName("C:\\Temp\\Test.pdf");

// to display this PDF in a browser using the Adobe Acrobat browser
// plug-in, then set the OutputStream of the descriptor like this.
descriptor.setOutputStream(response.getOutputStream());

After your PDFFileDescriptor is all set up, invoke the toPDF() method passing in a boolean true
if you want to include the column heading as the first row in the PDF file and the
PDFFileDescriptor.

Row.toPDF(includeColumnHeadings, descriptor);

10.5.5. XML File From a Row

To view Rows data in XML format you can click on the XML icon { }. Currently this is a
magic function (See Magic Request XML). (See XMLHelper)

In order to write a Row to a XML file, create an XMLFileDescriptor that defines attributes about
a XML file.

XMLFileDescriptor descriptor = XMLHelper.singleton().newXMLFileDescriptor();

// to write the XML data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// Rows XML data will be output to the file. If no file name is set,
// then it will be output to the browser.
descriptor.setFileName("C:\\Temp\\Test.xml");

After your XMLFileDescriptor is all set up, invoke the toXML() method passing in the descriptor.

Row.toXML(descriptor);

10.6. Row Subclassing

Row subclassing is a very important part of WOW customization that can be done without an
extensive amount of coding and can be implemented rather easily. Why do we need Row
subclassing? We need row subclassing because every project, database and set of data is
different. To extend the power of WOW we can override a RowCollection, Row, Field and
hundreds of methods that allow WOW to handle almost any type of need and customization. For
example you may have an option where you do not allow someone to set the salary field greater
than $70,000. That is where a new row subclass (i.e. a smart row) would be very convenient.

10.6.1. Create Row SubClass

Create a file called noEditSalRow that extends and overrides the Row class like shown below.
You can either use notepad or you can use some other tool such as IBM’s WebSphere to edit and
create the java file.

package planetj.samples.row

import planetj.database.*;
import planetj.dataengine.*;
import planetj.exception.*;

public class NoEditSalRow extends Row {

public boolean validate(ExecutingContext context) throws CMException {

if (context.getMode() == DataEngineManager.getIntMode(IDataEngine.MODE_EDIT)) {
double salary = getValueAsDouble("Salary");
if (salary > 70000) {

throw new CMException("Salary exceeds cash. Salary cannot be above
70,000.");

}
}
return super.validate(context);

}
}

After you have created the Java class, you’ll need to compile it using either the command line
with javac command or using WebSphere. This will pick up syntax errors which need to be
corrected and then the following class file needs to be saved in the
<Tomcat>/webapps/wow64/WEB-INF/classes directory. It needs to be saved in the same path as
is set in the java file such as package row, so it needs to be saved in a folder called row inside of
the classes folder. Now that you have created the class and saved it in the classes’ folder in
Tomcat Directories, we need to set WOW to pick up that new class.

10.6.2. Set WOW to Recognize New Java Class

Start the WOW Builder by bringing up the WOW application. Then bring up the operation that
you are updating or overriding. In the operation’s properties under the Advanced section, add
the row subclass to the Row Class field so that it will override the current row. Make sure that
you keep the path the same, starting in the classes folder, since NoEditSalRow is saved in the
Row folder in the classes folder.

After you have input the path for the new class, click Update and then run the operation. Next,
edit a row and change the salary to something over 70,000. It should throw an error message like
the one shown below and not allow you to update.

10.6.3. Overriding Methods

The Method that is overridden in this case is validate (ExecutingContext), which checks to see
whether or not data entered is correct. If not, it then throws an exception at that point, stopping
the action (which in this case is an edit command). There are many different methods that you
can override to change the behavior of RowCollection, Row and Field.

Field Methods
These are some of the methods of a Field which are frequently overridden in Field subclasses.
Remember the general pattern is for WOW to invoke the method on a field, which by default
invokes the equivalent method on its Row, which by default invokes the equivalent method on
the Field Descriptor. So you have two chances to override, in the Field or the Row. Usually it is
easier to have a single Row subclass rather than numerous field subclasses, but certain methods
(like getValue() or getDisplayValue()) are only present in the Field class, and therefore can only
be overridden by Field subclasses.

Association Operation - The operation which is used to retrieve the associated data for a field.
This is null when a field does not have an association

Field.getAssociationOperation()
Row.getAssociationOperation(String)
FieldDescriptorRow.getAssociationOperation()

Displayable - Whether or not a field should be displayed to the user

Field.isDisplayable(ExecutingContext)
Row.isFieldDisplayable(Field,ExecutingContext)
FieldDescriptorRow.isDisplayable()

DisplayValue - The String value that is displayed on the screen to the user. This is usually
dependent (but possibly different than) the actual value of the field, which may not be a String.
This is the method to override when you want to specially format what is displayed to the user.
Note that this method only determines the actual value of what is displayed, not its CSS style.

Field.getDisplayValue()

External Name - The field name displayed to the user

Field.getExternalName()
Row.getExternalName(String)
FieldDescriptorRow.getExternalName()

Possible Values Operation - The operation which is used to retrieve the possible values for the
field. This is null when a field does not have possible values

Field.getPossibleValuesSQLOperation()
Row.getPossibleValuesSQLOperation(String)
FieldDescriptorRow.getPossibleValuesSQLOperation()

Read Only - Whether or not the field is read only

Field.isReadOnly(ExecutingContext)
Row.isFieldReadOnly(Field,ExecutingContext)
FieldDescriptorRow.isReadOnly()

Required - If a user must enter a value for the field when inserting or updating the row

Field.isRequired(ExecutingContext)
Row.isFieldRequired(Field,ExecutingContext)
FieldDescriptorRow.isRequired()

StatusChanged - Invoked when a field is given a new value by the user. By default all fields in
the row are notified when a field in that row has its value changed, but only if that field has
"Notify Status Change" set to "Yes" in its Field Descriptor

Field.statusChanged(Field,ExecutingContext)
Row.statusChanged(Field,ExecutingContext)

Style Class - This is the CSS style which is used to display the field's display value to the user.

Field.getStyleClass(String,String,ExecutingContext)
Row.getStyleClass(Field,String,String,ExecutingContext)
FieldDescriptorRow.getStyleClass()

Value - The current value contained in the field. This is different than the display value. For
example, if a field's value is a date, its display value could be "03/10/2004" or "3-10-04" or
"March 10, 2004" but in all cases the field's actual value is the same date.

Field.getValue()
Field.setValue(Object)

SQLOperation Methods
This section shows the typical flow of control through an SQLOperation as a user runs it. When
overriding SQLOperations, it is important to remember that every single user accesses the exact
same instance of an SQLOperation. So, generally, you should not create fields at the class level
in your SQLOperation subclass, unless it is okay for all users to see the same value for those
fields. Local variables within a method are OK.

1. User clicks on link to run the operation. The getNewContextInternal() method is
invoked, which creates and returns an SQLContext object. This SQLContext contains
the SQL for the operation, including the parameters & parameter values, and is used to
generate the parameter prompts on the screen for the user to interact with. If you need
to change the parameters displayed to the user, you should override the
getNewContextInternal() method.

2. User enters in values for the parameters and clicks the Search button. WOW takes the
values from the screen and uses them to populate the SQLContext (created in step 1).
At this point, the preExecute(SQLContext) method is invoked. Normally this method
does nothing, but you can override it to alter the SQLContext object, or even to create
& return a different SQLContext.

3. Using the SQLContext returned by the preExecute(SQLContext) method in step 2,
WOW runs the SQL query

4. The results of running the query, as well as the SQLContext that was used to run the
query are passed to the postExecute(Object,SQLContext) method. This method
normally does nothing, but you can override it to alter the operation results, or to return
different operation results

5. The operation results (typically a RowCollection) returned by the
postExecute(Object,SQLContext) method are displayed on the screen to the user.

RowCollection Methods
Methods which are commonly overridden in RowCollection subclasses include:

RowCollectionCreated() - Invoked after a RowCollection is created. The RowCollection will
have its SQLContext set, but will not yet contain any rows

RowCollectionPopulated() - Invoked after a RowCollection has been fully populated with all of
the rows read from the DB

Row Methods
Many of the most commonly overridden methods of a Row are listed in the Field section above,
because they deal with a particular field within the row. Methods that deal with the entire Row
which can be overridden include:

delete(Connection,ExecutingContext) - Invoked to delete a row. Situations where you might
want to override include cases where you need to perform some checks and possibly disallow the
deletion, or if you need to delete other rows in other tables whenever a particular row is deleted.

insert(SQLContext) - Invoked whenever a row is inserted into the DB. You can override this
method to adjust the row's values prior to insertion, or after insertion.

update(Connection,ExecutingContext) - Invoked when a row in the DB is updated. Override this
method to alter the default update behavior

Other Methods
Boolean validate (Executing Context) - Validates the field based on its configuration and value.
Customize the accepted values of a field

Boolean isRequired (ExecutingContext) - Tests whether or not field is required. Subclasses may
need this because change of default values when overriding a row.

Boolean isAuthorizedForEdit (ExectutingContext) - Tests if users can edit this field. Can
specify what user can edit what fields or what fields are not editable by anyone.

Boolean isFieldRequired (Field, ExecutingContext) - Same as Field’s isRequired but is called by
Row.

Row prepareForDetails (ExecutingContext) - Gets the proper Row for viewing this Rows
Details. Can get extra fields for the details by overriding. Can alter field values before row is
displayed.

Boolean isFieldReadOnly (Field, ExecutingContext) - Tests if the Field is read-only. Override to
change the behavior and rules of read-only.

Boolean isDeletable (ExecutingContext) - Checks to see if this Row may be deletable (default:
True). Can make certain rows undeletable while deleting others.

Boolean isValidateRequired () - Tests if row must be validated before it is inserted. Can skip
over validation under customized circumstances.

Row prepareForResultsDisplay (ExecutingContext) - Allows the current row to handle any
necessary actions before being displayed in a results table.

10.6.4. Another Example of Overriding Row and Field Methods

The first example overrode the validate method to not allow anyone to change the salary field to
a value over 70,000. Now we are going to override the isFieldReadOnly method so that a field
such as the salary can only be edited by a user that is defined as a manager in the database . We
first must create the class and Java file that overrides the Row. Shown below is the basic code to
start any of the classes to override a Row.

package planetj.samples.row

import planetj.database.*;
import planetj.dataengine.*;
import planetj.exception.*;

public class ManagerEditRow extends Row {

public boolean isFieldReadOnly(ExecutingContext context, Field pField) {
Field jobField = getField("JOB");
boolean read = false;
if (pField.getName().equals("SALARY")) {

if (!jobField.getValueAsString().equals("MANAGER")) {
read = true;

}
}
return read;

}
}

After writing the code above, we would compile it into a class file and copy that file into the
classes directory under Apache Tomcat and wow64 (as talked about in the last section). Then

specify the row class in the operation as a class to override Row as shown above. Next run the
application to see if it works. All of the methods used can be referenced and accessed from our
online JavaDocs at http://www.planetjavainc.com.

10.6.5. Multiple Methods and Parameters

It is possible and probably encouraged to put more than one of the methods you are overriding in
the same Row Subclass. For example, we could put the same NoEditSalRow method (which is
validate) into the ManagerEditRow Java file with its code so that you have one class and two
methods that will override the original Row. That way we can get two different behaviors from
the same file. The user cannot change any salary above 70,000 and can only change the salary
when the job is set to manager.

package planetj.samples.row

import planetj.database.*;
import planetj.dataengine.*;
import planetj.exception.*;

public class ManagerEditRow extends Row {

public boolean isFieldReadOnly(ExecutingContext context, Field pField) {
Field jobField = getField("JOB");
boolean read = false;
if (pField.getName().equals("SALARY")) {

if (!jobField.getValueAsString().equals("MANAGER")) {
read = true;

}
}
return read;

}

public boolean validate(ExecutingContext context) throws CMException {

if (context.getMode()== DataEngineManager.getIntMode(IDataEngine.MODE_EDIT))
{

double salary = getValueAsDouble("Salary");
if (salary > 70000) {

throw new CMException("Salary exceeds cash. Salary cannot be above
70,000.");

}
}
return super.validate(context);

}
}

10.6.6. Example of Overriding the Update Method in a Row Subclass

Overriden Update Method
This first method shows the update method overridden to set a field value (POLICYNUM) not
specified on the edit screen. In this particular instance, we want to set the insurance policy
number to the next available number prior to the update (we want to control this value
internally).

http://www.planetjavainc.com/

/**
* Updates the database with the values in this Row.
*/
public synchronized int update(Connection connection, ExecutingContext ec)

throws CMException, DistributedException {

this.setFieldValueAsString("POLICYNUM", getNewPolicyNumber());
return super.update(connection, ec); // Now update the row

}

Method Containing Internal Query
This second method queries the policy master file to determine the next available policy number.

/**
* Returns the next available policy number. Only allow 1 user to extract
* policy number at a time.
*/

private synchronized String getNewPolicyNumber() throws CMException {

String policyNum = "5000000"; // Set default value in case this
// is the first one.
Row row = null;
SQLContext context = new SQLContext(“MYCONNECTION”);
context.setRowClass(Row.class);
context.setSQL("SELECT MAX(POLICYNUM) AS POLICYNUM FROM "

+ "MYLIB.MASTERFILE");

row = DataEngine.getRow(context); // Read the max row

if (row != null) {
int policyNumInt = row.getValueAsInt("POLICYNUM");
policyNumInt++; // Set to next available number
policyNum = Integer.toString(policyNumInt);

}

return policyNum;
}

10.6.7. Example of Overriding the Insert Method in a Row Subclass

Overriden Insert Method
This first method shows the insert method overridden to call an external program after the insert
is complete. An account number specified on the insert screen is passed to the program call
method.

/**
* Here we need to call an external program after the insert is complete.
*
*/

public int insert(SQLContext context) throws CMException {
int returnValue = super.insert(context);
String acctNum = getValueAsString("ACCTNUM");
callExternalProgram(acctNum);

return returnValue;

}

Method Containing External Program Call
This second method calls an external program using an SQL procedure. A procedure provides
the simplest method for calling native external programs from Java. In this example, we are
calling program mylib/handleacct with one input parameter and one output parameter.
NOTE: You’ll need to create an external SQL procedure on your local system using a CREATE
PROCEDURE statement similar to the one documented in the method comments below:

 /**
* The procedure below is used to call the external program with 2 parameters:
* CREATE PROCEDURE MYLIB.HANDLEACCT (
* IN ACCTNO CHAR(7) ,
* OUT RC CHAR(2))
* LANGUAGE RPG
* SPECIFIC MYLIB.HANDLEACCT
* MODIFIES SQL DATA
* EXTERNAL NAME 'MYLIB/HANDLEACCT'
* PARAMETER STYLE GENERAL ;
*/

private void callExternalProgram(String acctNo) throws CMException {

String errorMsg = “”;
Connection c = planetj.database.DatabaseManager.getConnection("MYCONNECTION");
try {
 CallableStatement cs = c.prepareCall("CALL MYLIB.HANDLEACCT (?,?)");
 // Input Parm
 cs.setString(1, acctNo); // Parm 1 = Acct #
 // Output Parm
 cs.registerOutParameter(2,Types.CHAR); // Parm 2 = Return Code
 // Call the procedure (program)
 cs.execute();
 // Process return code
 String rCode = cs.getString(2);
 if (!rCode.equals("00")) {

// Problem with program call?
 errorMsg = "Call to program failed with rc = " + rCode + ".";
 }
} catch (Exception e) {

throw new CMException(e);
} finally {
 try {

cs.close(); // close call statement
 } catch (SQLException sqle) {

cat.error("Failed to close callable statement.", sqle);
 }
 // Return the connection
 if (c != null) {

planetj.database.DatabaseManager.freeConnection(c);
 }
 if (!errorMessage.equals("")) { // Program encountered problems

throw new CMException(errorMessage);
 }
}

}

10.7. Row Actions

Row actions are actions that are performed on a row when the action button is pressed. A few
common scenarios include restarting a connection, sending email, updating the row or an ‘Add to
Cart’ button. Row actions are similar in appearance to RowCollection and Operation actions.
They are also similar in that row actions invoke the

Row.handleAction() method

Row actions appear to the left of the Row when the when a Row is being displayed to the user.
Below is a screen shot showing a “Start a Connection” Row action.

/**
* Basic code for Start Connection Row Action shown above.
*/

public Object handleAction(String action, ExecutingContext ec) throws CMException
{

 if (ACTION_START.equalsIgnoreCase(action)) {
DatabaseManager.performConnectionPoolAction(getAlias(),
DatabaseManager.ACTION_START_CONNECTION_POOL);

}
}

To create a basic row action you must first create a Row subclass and override the
Row.getRowHandledActionNames() method. This method is called when WOW is generating
the Row and checking whether or not any actions exist. For a Row Action to be displayed, you
need to add it to the Action Array List which is created within getRowHandledActionNames().
Below, three actions are added for the connection row:

/**
* Get a list of action's this connection row supports.

*/
public List getRowHandledActionNames() {
// see if super class has any actions to include
List actions = super.getRowHandledActionNames();
if (actions != null) {

//Create new actions array list
actions = new ArrayList(actions);

}
else {

actions = new ArrayList();
}

// add connection row actions
actions.add(ACTION_START);
actions.add(ACTION_STOP);
actions.add(ACTION_RESTART);

return actions;
}

Now that we have added the action names to the actions list, these actions will show up when
this Row is generated, but the actions when clicked will do nothing. To add Action functionality,
the method Row.handleAction() is overridden. The method handleAction() takes in a String and
current ExecutingContext. The String is the name of the action that was clicked on, if you have
multiple action names with different actions then we need to test for the correct action within
handleAction(). After testing, if it’s the correct action, then all action code should be included
within the handleAction() method.

/**
*Basic connection row handle action method which handles given action.
*/
public Object handleAction(String action, ExecutingContext ec) throws
CMException {

if (ACTION_START.equalsIgnoreCase(action)) {
DatabaseManager.performConnectionPoolAction(getAlias(),
DatabaseManager.ACTION_START_CONNECTION_POOL);

}
else if (ACTION_STOP.equalsIgnoreCase(action)) {
DatabaseManager.performConnectionPoolAction(getAlias(),
DatabaseManager.ACTION_STOP_CONNECTION_POOL);

}
}

Whenever the above row subclass is used, the row actions will display to the user. These are the
basics of creating a Row Action. There are also many other configurations and extra properties
that can be used to customize Row Actions.

To customize your row actions, you can override the getActionDescriptor() method and change
settings such as action image and action display type. In the example below, the stop and start
actions have the same display type but different images.

public ActionDescriptor getActionDescriptor(AbstractAction action) {
// get type and name of action
String type = action.getType();
String name = action.getName();

// return default descriptor for row actions
if (IRowAction.TYPE.equalsIgnoreCase(type)) {

if (ACTION_START.equalsIgnoreCase(name)) {
 ActionDescriptor ad = ActionDescriptor.createDescriptor(type,
name);

ad.setImageSource("dataengine/images/start.gif");
ad.setDisplayType(ActionDescriptor.DISPLAY_TYPE_LINK);
return ad;

 }
 else if (ACTION_STOP.equalsIgnoreCase(name)) {
 ActionDescriptor ad = ActionDescriptor.createDescriptor(type, name);

ad.setImageSource("dataengine/images/stop.gif");
ad.setDisplayType(ActionDescriptor.DISPLAY_TYPE_LINK);
return ad;

 }
}

return super.getActionDescriptor(action);
}

In some cases you may want to hide actions depending on certain settings or behaviors. In that
case, you can override the isActionApplicable() method. In the isActionApplicable() method,
you would test for the particular action name, test if applicable and then return true if applicable.
The isActionApplicable() is always called before displaying the actions.

/**
* Check to see if the action is applicable for this connection row
 */
public boolean isActionApplicable(String action, ExecutingContext ec) throws
CMException {

if (ACTION_START.equalsIgnoreCase(action)) {
 if (doesConnectionPoolExist()) {
return false;

 }
else {
return true;

 }
}

There may be cases were you add row actions to a row but want to control whether the action is
displayed as well as its properties by using Property Groups. When you override the
Row.getRowHandledActionNames() method, all the actions are displayed by default to the user.
Another way to add actions is to add an Actions{} and ActionDescriptor{} property group with
the Action specified. Define the type of action and action name (see example below) to include
with the Row. In this case the Row.getRowHandledActionNames() does not have to be
overridden. NOTE: You still need to override the handleAction() to define action.

The following row property groups create an “action_name” row action with the label “My
Action” that appears to the left of the row when displayed to the user.

Actions {
type: row;
show: action_name;
}

ActionDescriptor {
 name: action_name;
 actTyp: row
 label: My Action;
}

Both of the property groups above are necessary to create an action. To check out all the possible
properties and values for the ActionDescriptor property group, see the Operation Actions section.

10.7.1. Example of Another RowAction

In this example we will be creating a new “Compile” row action. To create a basic row action
we must first create a Row subclass. In the WOW web project in the src folder you can create
your own package to hold the new Row subclass. As an example, you can create a package in
the src folder and name it com.test. This will extend the Row. To go back to our “compile”
example, create a Row Subclass with the name of CompileActionClass as shown in example
below.

public class CompileActionClass extends Row {

// class body //

}

Now, you must override the Row.getRowHandledActionNames() method. This method is called
when WOW is generating the Row and checking whether or not any actions exist. For a Row
Action to be displayed, you need to add it to the Action Array List which is created within
getRowHandledActionNames(). Below you can see one action added to the connection row:

First Compulsory Method:

/**
* Get a list of actions this connection row supports.
*/
public List getRowHandledActionNames () {
List actions = super.getRowHandledActionNames ();
if (actions == null){

actions = new ArrayList();
}
actions.add("Compile");
return actions;

}

Running the application after adding the action, your screen will show the ‘Compile’ button
shown below. Remember, you haven't added any action to the ‘Compile’ button yet, so it will not
have functionality yet.

You can add multiple actions in the list like:

public List getRowHandledActionNames () {
List actions = super.getRowHandledActionNames ();

if (actions == null){
actions = new ArrayList();

}
actions.add("Action1");
actions.add("Action2");
actions.add("Action3");
actions.add("Action4");
actions.add("Action5");
return actions;

}

Second Compulsory Method:

For a Single Action:

public Object handleAction (String action, ExecutingContext ec) throws
CMException {
super.handleAction(action, ec);
if(action.equals("Compile")){

//Custom Coding of Action
return "Compile";

}
return "Unknown Action Called";

}

For multiple actions:

public Object handleAction (String action, ExecutingContext ec) throws
CMException {
super.handleAction(action, ec);
if(action.equals("Actions1")){

//Custom Coding of Action
return " Actions1";

}
if(action.equals("Actions2")){

//Custom Coding of Action
return " Actions2";

}
if(action.equals("Actions3")){

//Custom Coding of Action
return " Actions3";

}
if(action.equals("Actions4")){

//Custom Coding of Action
return " Actions4";

}
return "Unknown Action Called";

}

After creating a new subclass, it is necessary to attach that class within an operation in WOW.
When clicking on the edit button on any operation in the Advanced Section there is a field ‘Row
Class’. This is where the new class with its package name should be added. Suppose we created
the class ‘CompileActionClass’ in com.test package. It is necessary now to insert the new
class:’com.test.CompileActionClass’ in the row class field. It is not necessary to mention .class
or .java with class name. WOW already knows about it.

After this, click the Update Operation button. If the class name is not correct, WOW will display
an error. WOW will accept the operation only if the name is a valid class file.

Now that the action names have been added to the actions list, these actions will show up when
this Row is generated, but they will do nothing when clicked. To add Action functionality, the
method Row.handleAction() has to be overridden. The method handleAction() takes in a String
and the current ExecutingContext. The String is the name of the action that was clicked on. If
there are multiple action names with different actions, it is necessary to test for the correct action
within handleAction(). After testing, if it’s the correct action, then all action code should be
included within the handleAction() method.

/**
*Basic connection row handle action method which handles given action.
*/
public Object handleAction (String action, ExecutingContext ec) throws
CMException {
super.handleAction(action, ec);
if(action.equals("Compile")){

Field cdCode = this.getField("CDCODE");
String cdCodeString = getValueAsString("CDCODE");

// Custom Coding for Compiling Code

return "Compile";
}
return "Unknown Action Called";

}

Whenever the above row subclass is used, the row actions will display to the user.

11. Fields
As previously mentioned above, Fields are contained within a Row’s FieldCollection. Each
Field has a FieldDescriptor (described below), as well as possibly having a Formatter and/or
PossibleValues. All three are used for displaying or containing information about the Field.

11.1. Creating a Field

Fields are created internally within the DataEngine when RowCollections are retrieved. In some
situations, however, they might need to be created by the user. For example, if a Field has an
override class for its possible values, the user may wish to create their own RowCollection rather
than using the DataEngine. To create a Field, call the following method:

Field.create(String fieldname, int sqlType).

This will return a subclass of Field (see next section) for the correct java.sql.Types with the
given name and index. The name is the Field’s column name within the database.

Note: SQL type arguments should be one of the java.sql.Types (e.g.
java.sql.Types.INTEGER).

11.2. Field Classes

To allow for the correct formatting of different java.sql.Types, each type has its own subclass of
Field. This allows for multiple benefits:

1. A Field subclass already knows its java.sql.Type, therefore it returns the proper format
of its SQL value.

2. Proper value validation is handled by the Field’s Class
3. If you know the Field subclass type, for example an IntegerField, you can directly

retrieve its int value ((IntegerField) field).getInt(). [Similar for other fields as well]

11.2.1. Default Class

When a column value is read from the database, the proper Field class is created depending upon
its type. The java.sql.Types are currently mapped to the following Field classes.

BigIntegerField
− SMALLINT
− INTEGER
− BIGINT

BigDecimalField
− FLOAT
− REAL

− DOUBLE
− NUMERIC
− DECIMAL

StringField
− CHAR
− VARCHAR
− LONGVARCHAR

DateField
− DATE

TimeField
− TIME

TimestampField
− TIMESTAMP

11.2.2. Custom Class

To enhance the meaning of data in the database even further, custom Field classes can be used.
A custom class will ensure a Field’s value has:

1. Correct display formatting
2. Proper validation

The following code snippet shows how to set the Field’s Field Class on the FieldDescriptor
(assumes the FD has already been created and retrieved).

fd.setFieldClass(<class>);

Note: When setting a custom class, the class’s fully qualified name must be used. An
example would be “planetj.database.field.UserIdField”.

In the next few sections, some pre-built DataEngine custom Field classes are listed and
described. All pre-existing Field classes provided by the DataEngine are in the package
planetj.database.field.

DateField
In the database, a date field might not necessarily be a Date object. It could be a String or a
number. To allow for proper reading and writing to the database, a Field’s Field class could be
set to the DateField, followed with a comma and any user-defined pattern for date formatting.
The pattern should be the format the value should be written as when inserted or updated to the
database. The DateField object uses a java.text.SimpleDateFormat to generate the correct value
for inserting or updating. See below for an example pattern.

Note: See java.text.SimpleDateFormat JavaDoc to get a complete list of all reserved
characters.

Fully qualified class name: planetj.database.field.DateField

Ex: Benefit of Setting DateField Field Class
In the database we have a field that is a CHAR with a length of 8. It takes the format 2 month, 2
day, and 4 year. When we read the value from the database, it has no meaning and has to be
modified whenever we want to display the date. If we set the field class to DateField, then a java
Date object will be generated, which gives the Field’s value more meaning and flexibility. If we
ever need to insert or update the value, it needs to be in the format listed above. Do this by using
the reserved characters of java.text.SimpleDateFormat (MMddyyyy). Now all we need to do is
set the field class to the following (fully qualified class name followed by a comma and then the
pattern than the date needs to be in order to be written to the database).

planetj.database.field.DateField,MMddyyyy

EmailField
In the database, an EMAIL column’s value might be support@planetjavainc.com. By setting the
Field Class to an EmailField, the proper display value will be generated automatically. Plus, the
proper validation will occur if the EMAIL value is changed. For example, in HTML, the display
value would be generated as follows:

support@planetjavainc.com

Thus, a user could click on the link, then type and send an email to the address. This would be
especially beneficial if you wanted to display a list of emails. Rather than manually coding each
email link, setting the Field class to EmailField would automatically generate the links.

The validation of an email field ensures the value contains a ‘@’ symbol as well as a ‘.’ by using
a helper class planetj.validation.Validator.

Fully qualified class name: planetj.database.field.EmailField

FirstNameField
The validation of a first name field to ensure that the value is valid for a first name.

Fully qualified class name: planetj.database.field.FirstNameField

LastNameField
The validation of a last name field to ensure that the value is valid for a last name.

Fully qualified class name: planetj.database.field.LastNameField

PasswordField
This Field ensures that when a PasswordField is displayed it will be replaced with asterisks.
This can be very useful for sensitive information such as passwords.

Fully qualified class name: planetj.database.field.PasswordField

PhoneNumberAreaCodeField
The validation of an area code field ensures that the length of the area code is the correct length
and only contains digits. If the value contains ‘(‘, ‘)’, or ‘-‘ they are also accounted for. This
class also uses a helper class planetj.validation.Validator for validation.

Fully qualified class name: planetj.database.field.PhoneNumberAreaCodeField

PhoneNumberField
The validation of a phone number field ensures that the length of the phone number is the correct
length and only contains digits. If the value contains ‘(‘, ‘)’, or ‘-‘ they are also accounted for.
This class also uses a helper class planetj.validation.Validator for validation.

Fully qualified class name: planetj.database.field.PhoneNumberField

SocialSecurityField
The validation of a social security field ensures that the length of the social security is correct
and its value only contains digits. If the value contains any ‘-‘ they are also accounted for. This
class also uses a helper class planetj.validation.Validator for validation.

Fully qualified class name: planetj.database.field.SocialSecurityField

UpperCaseStringField
This Field ensures that its value is always upper case when displaying, inserting or updating to
the database.

Fully qualified class name: planetj.database.field.UpperCaseStringField

UserIdField
This field has been enhanced to get the current user from its context.

Fully qualified class name: planetj.database.field.UserIdField

YBlankBooleanField
This Field can be used when you want the value in the database to be of type CHAR and length
1. Since the field is a boolean field, then it will be displayed in the form of a check box. Thus,
the user cannot enter the wrong value. When setting the value programmatically, a boolean
value ‘true’ or ‘false’ can be used, which will in turn set the value to ‘Y’ or ‘ ‘.

Fully qualified class name: planetj.database.field.YBlankBooleanField

YNBooleanField
Same as YBlankBooleanField except a ‘N’ instead of a ‘ ‘.

Fully qualified class name: planetj.database.field.YNBooleanField

ZipCodeField
The validation of a zip code field ensures the zip code is the correct length and only contains
digits. If the value contains a ‘-‘ they are also accounted for. This class also uses a helper class
planetj.validation.Validator for validation.

Fully qualified class name: planetj.database.field.ZipCodeField

ZipCodeSuffixField
The validation of a zip code suffix field ensures the zip code suffix is the correct length and only
contains digits. If the value contains a ‘-‘ they are also accounted for. This class also uses a
helper class planetj.validation.Validator for validation.

Fully qualified class name: planetj.database.field.ZipCodeSuffixField

Ex: Setting Field’s Custom Field Class
A value in the database is a CHAR with a length of 6. This value represents a Date. The
problem is when it gets displayed in a gui, it doesn’t have any meaning. It will look like an
ordinary number. The solution is simple, all that needs to be done is set the Field’s Field Class
to a custom Field class that can handle the proper formatting of the value. For this example, lets
say we want the date to be displayed like MM/dd/yyyy. All we have to do is set the proper Field
Class in the Field’s FD. This code example assumes the FieldDescriptor has already been
retrieved and is called ‘FD’ (see Retrieving a FieldDescriptor).

fd.setFieldClass(“planetj.database.field.DataField,MM/dd/yyyy”)

In the above code, the comma separates the fully qualified name of the Field class from the
format of the Date we want to use.

11.2.3. Benefits of Using Custom Field Classes

At first glance, some of the above Field classes might not seem to be of much benefit. The real
power behind them lies in what the DataEngine can do just by knowing a Field’s class.

1. Server-side validation
2. Display formatting
3. Client side validation
4. “Smart” code (see example below)

Example – Smart Sign on Using Field Classes
For some applications (#1) you need to have a sign on. You would then need to check the user
id and password against some table in the database. This would require that you know the

column name for the user id and the column name for the password, as well as the table to look
in to check if the user exists. Then, there is another application (#2) which also needs a sign on.
This would require you to know the same information. The problem is that this application
might check a different table as well as have different column names for the user id and
password.

This can be solved with “smart” code. Just set the user id Fields to use the custom Field class
UserIdField. And then set the password Field’s to use the custom Field class PasswordField.
Then when you go to do the sign on, the same code can be used. This time all you need to do is
specify the name of the table to look in. The column names of the user id and password can be
retrieved from the table’s FieldDescriptors. This allows the lookup to dynamically select the
proper fields containing the user id and password. Plus the same code could be used for each
sign on, and possibly other applications if there were more.

12. Working With FieldDescriptors (FD’s)
A FieldDescriptor is an object that contains characteristics that describe any given field in a
table. Some of the characteristics included in a FieldDescriptor are its field name, its label, max
length, its type (class), and many others. FieldDescriptors allow for easier display and
formatting of a field and its data. A good example would be in HTML; FieldDescriptors can be
used to automatically format the proper HTML for any given field.

12.1. Creating

FieldDescriptors can be created by inserting FieldDescriptor information into the FLDDATA
file. A FieldDescriptor is a Row and therefore can easily be inserted into the FLDDATA file
after creation using the Row’s insert() method. There is no need to enter it manually.

12.1.1. Auto Population of Field Data File

By using static methods on the FieldDescriptorManager, you can also auto populate the
FLDDATA file using DatabaseMetaData to fill in the basic needed portion for a FieldDescriptor.
Then all you need to do is modify parts of the record for the FieldDescriptor, rather than creating
the entire entry. The following are the static methods on FieldDescriptorManager that can be
used to create FD’s for fields.

1. Library – generate FD’s for all fields in all tables in the given Library

createFieldDescriptorsFromDBMetaData(Library)
createFieldDescriptorsFromDBMetaData(Connection, Library)

2. Table – generate FD’s for all fields in the given Table

createFieldDescriptorsFromDBMetaData(Table)
createFieldDescriptorsFromDBMetaData(Connection, Table)

3. Field – generate an FD for the given Field or using the given field name for the given
Table

createFieldDescriptorsFromDBMetaData(Field)
createFieldDescriptorsFromDBMetaData(Connection, Field)
createFieldDescriptorsFromDBMetaData(Table, String)
createFieldDescriptorsFromDBMetaData(Connection, Table, String)

Example – Auto Population of FD’s
Let’s say you had a table called ‘Employees’ in the library PlanetJ, that contained three fields;
FN, LN, and SS#. These columns might not be very intuitive to a user who is viewing records.
This is where FieldDescriptors come in handy. We can create an FD for each column of the
table and set an external name for each.

First, the Table object needs to be created. The method below is just one of a couple ways. The
boolean true means to create the Table object if it doesn’t already exist.

Table table = Table.getTable(<system alias>, “PlanetJ”, “Employees”, true);

Next, we can use the Table object to create FieldDescriptors from database metadata. FD’s
could be created individually be creating the object manually and setting its values, but by auto
populating using database metadata, most of its necessary properties get set (such as its size,
name, library, table, default value, etc…).

FieldDescriptorManager.createFieldDescriptorsFromDBMetaData(table);

Instead of the above method, we could have made three separate calls to the
FieldDescriptorManager’s create FD method that takes a Table object and the field name. But
that would take 3 database hits rather than 1. Now that the FD’s are created, we can retrieve
each and set its external name.

FieldDescriptorRow fd = table.getFieldDescriptor(“FN”);
fd.setExternalName(“First Name”);
fd.insert();

fd = table.getFieldDescriptor(“LN”);
fd.setExternalName(“Last Name”);
fd.insert();

fd = table.getFieldDescriptor(“SS#”);
fd.setExternalName(“Social Security Number”);
fd.insert();

Now that the FD’s have been created, modified and inserted, whenever a RowCollection (results)
gets displayed the column names will be that of the FD’s’ external names.

12.2. Retrieving an FD

A Field’s FieldDescriptor can be retrieved in many ways. The following lists the objects and
when they can be used to obtain a Field’s FieldDescriptor as well as the methods to do it.

Field.getFieldDescriptor()
Row.getFieldDescriptor(String fieldName)
Table.getFieldDescriptor(String fieldName)

// get all FD’s for all Fields in Row
Row.getFieldDescriptors()

// get all FD’s for Table
Table.getFieldDescriptors()

Note: When calling getFieldDescriptor() from a Field or Row, the Field’s FD is returned.
FieldDescriptors are stored by the Table they belong to. A Field, however, may have its
own unique instance of an FD, which will allow for special casing of a Field.

12.2.1. FieldDescriptorManager

FieldDescriptors can also be retrieved through static methods in a convenience class called
FieldDescriptorManager.

getFieldDescriptor(String libName, String tblName, String fldName)

getFieldDescriptor(String sysURL, String libName, String tblName, String fldName)

getFieldDescriptors(String libName, String tblName)

getFieldDescriptors(String libName, String tblName, boolean checkFile)

getFieldDescriptors(String sysURL, String libName, String tblName)

getFieldDescriptors(String sysURL, String libName, String tblName, Boolean
checkFile)

The parameters from the methods above are:
• sysURL: system url
• libName: library name
• tblName: table name
• fldName: field name
• checkFile: boolean indicating whether or not to see if the descriptor for the field is stored

in the FLDDATA file (see FieldDescriptor Data File in FieldDescriptor section).

12.3. FD Operations

12.3.1. Cloning an FD

Cloning an FD can be very useful, especially when a Field needs to be handled differently in
some case than it would normally. An FD is a subclass of Row and therefore is cloned the same
way (see Cloning a Row).

Example – Why Cloning an FD Might Be Useful
This is a simple, but explanatory example. There are 5 different applications all using the same
FieldDescriptors. The problem is that one of the applications wants the external name of one of
the columns of a Table different than the other 4 applications want it. To solve this problem, the
application that wants to have a different external name, can clone the FieldDescriptor, set the
new external name, and then set the cloned FD on any Field’s it wants to have use it. Then any
call to get the Field’s FD, will return the Field’s own unique FD.

13. Possible Values (PV)
Fields often have possible values. For example, a gender field can be “Male” or “Female”.
Some fields can have possible values, as well as possible display values. The DataEngine allows
for the configuration or population of possible values for a particular field. There are 3 ways to
establish possible values for a field.

1. Specification of a Java class that will return possible values. The DataEngine supplies
many common possible value classes for your use. You can also easily write your own
class.

2. Population of possible values as described below.
3. Specification of an SQL statement as described below.

To allow possible value population and SQL specification, there is a file called
PLANETJ.DEPVDTA (DataEngine Possible Values Data). Possible values for a field can be
obtained directly from this file or by an SQL statement specified on this file.

13.1. Creating Possible Values

There are a couple of ways of creating possible values for fields.

13.1.1. Using an SQL Statement For Possible Values

An SQL statement can be used to specify to the DataEngine where and how a field’s possible
values can be retrieved. In order for it to work properly, the following apply:

1. The KEY for the possible value should be “*SQL*”.

2. The VALUE contains the SQL statement that can be executed to retrieve the possible
values. (see Note below for format of SQL statement)

3. Nothing needs to be put in the DSPVAL and DSPVALSQLT columns.

Note: SQL statements must be of the following format. When executed, they should return
a result set containing either a column containing a value OR two columns, one with a
value and the second with its display value.

SELECT <value column> [,<display value column>] FROM ……

* Currently possible values do not work with prepared statements.

13.1.2. Using a Key For Possible Values

A unique key can also be used for retrieving possible values from possible values file. In order
to use a unique key, the following must apply.

1. The KEY field value should be the unique key (e.g. – “usstates”).

2. The VALUE field would then contain the possible values identified for a field using that
KEY (e.g. – CA, …, MN, … etcetera).

3. The DSPVAL and DSPVALSQLT can optionally have data (e.g.- California, …
Minnesota, …, ecetra).

13.1.3. Using a Value For a Possible Value

The values set in the VALUE column need to be in the proper string format for the field’s
FieldDescriptor to be able to convert it into the correct object. The class SQLGenerator can be
used to provide the proper string formatting for an object.

SQLGenerator.getValueAsString(Object obj, int sqlType)

Note: the SQL type would be the same java.sql.Types as the Field to which it is a possible
value.

13.1.4. Using a Value and a Display Value For Possible Values

The <optional> values set in the DSPVAL column need to be in the proper string format as well.
See “Using a value for a possible value” above for the reasons why. The same applies for
display values. The only difference is if a value has a display value, then the display value’s
java.sql.Type needs to be supplied (DSPVALSQLT) in order for the display value to be
converted to the correct object.

Example – Description of Possible Values’ Display Values
A field’s possible values might be “one”, “two”, and “three”, but their respective display values
might be 1, 2, and 3. The display values in turn need a java.sql.Types in order to convert them
into their proper form. In this case it would be java.sql.Types.Integer.

Note: the value’s SQL type can always be retrieved from the Field’s FieldDescriptor.

13.2. Creating a PV Class
13.2.1. Using Existing PV Classes

Enter the package qualified name of the Java class into file PLANETJ.FLDDATA using the
PVClassName field (char 50). When a field is asked for possible values, the supplied class will
be instantiated and called to return the possible values. The DataEngine supplies the following
classes:

Class Name Key Description
USStatesPV *US_STATES* Value: 2 digit State abbreviation

Display Value: State description
(Ex. IA-Iowa)

DayOfTheWeekFieldPV *DAYS_OF_THE_WEEK* Value: 1 digit integer
Display Value: Day description
(Ex. 1-Monday)

MonthFieldPV *MONTHS_OF_THE_YEAR* Value: 2 digit integer
Display Value: Month
description
(Ex. 01-January)

SQLTypePV *SQL_TYPES* Value: SQL Type integer
Display Value: String
representation
(Ex. 1-CHAR)

13.2.2. Create Custom PV Classes

To create your own possible value retriever class, follow the steps below:
Create a Java class that implements the planetj.dataengine.fielddescriptor.IPossibleValueGetter
interface.

1. Implement the following methods:
2. RowCollection getPossibleValues() // Return the possible values
3. RowCollection getPossibleValues(Field) // Return the possible values considering the

field or any other field in the field’s row.
4. It is recommended that your possible value class use the DataEngine.getRows() methods

to return a RowCollection. If the RowCollection returns 1 column, that column will be
used for the value and display value. If the RowCollection returns 2 columns, it is
assumed the 2nd column will be the display value.

13.3. Retrieving Possible Values

Possible values can be retrieved through a given Field, its FieldDescriptor, or the
PossibleValueManager. If a possible values class is specified on the Field’s FieldDescriptor,
then it is used and invoked in order to retrieve the Field’s possible values.

13.3.1. FieldDescriptor

getPossibleValues(Field field)

13.3.2. PossibleValueManager

The follow static methods can all be called to retrieve an array list of possible values from the
PossibleValueManager.

The first four methods take the field itself as a parameter and optionally specify whether or not
the possible values should be cached when retrieved and also optionally specifying a key (e.g. –
“usstates”, or “*SQL*”)

getPossibleValues(Field)
getPossibleValues(Field, boolean)
getPossibleValues(Field, String)
getPossibleValues(Field, String, boolean)

The next four methods are similar to the above methods only differing in they take the field’s
system url, library name, table name, and name.

getPossibleValues(String, String, String, String)
getPossibleValues(String, String, String, String, boolean)
getPossibleValues(String, String, String, String, String)
getPossibleValues(String, String, String, String, String, boolean)

Note: When no key is specified the PossibleValueManager will take the following actions.

1. First it checks to see if any possible values exist for the field that do not have a key.

2. Then, if there were not any, it checks to see if there are possible values specified by the
key *SQL*.

3. If there still isn’t any, then null is returned.

14. “Magic” Requests

14.1. Requests

14.1.1. Page

When HTML is generated for a RowCollection, next and previous links are also generated as
described in Next or Previous RowCollection. These links are handled via a Magic Request.

14.1.2. Sort

You can magically sort an HTML table by any column by clicking on the up { } and down { }
arrows in the column header you wish to sort. To see more on sorting (See Sorting a
RowCollection). The magic sort uses a SortRequest class which contains constants for the sort
order (SortRequest.ASC and SortRequest.DESC).

14.1.3. Refresh

You can magically refresh an HTML table by clicking on the refresh pinwheel { }. To see
more on refreshing (See Refreshing a RowCollection). This magic refresh uses a
RefreshRequest class which is responsible for the magic.

14.1.4. CSV/Excel

You can magically display an HTML table as a CSV (Comma Separated Variable) file in your
browser using an Excel plug-in. This can be done by clicking on the Excel icon { }. To see
more on generating a CSV file (See Generating a CSV file from a RowCollection). This magic
request uses an ExcelRequest class which is responsible for the magic.

14.1.5. Microsoft Word

You can magically generate a Microsoft Word file from any database table using the MSWord
Magic Request by clicking on the Microsoft Word icon { }. Currently, the MSWord Magic
Request calls the (DOCHelper) which uses (CSVHelper). To see more on more on generating a
Microsoft Word file (See Generating a Microsoft Word file from a RowCollection). This magic
request uses an MSWordRequest class which is responsible for performing the magic.

14.1.6. XML

You can magically display an HTML table or RowCollection in XML format in your browser.
This can be done by clicking on the XML icon { }. To see more on generating a XML file
(See Generating a XML file from a RowCollection). This magic request uses an XMLRequest
class which is responsible for the magic.

14.1.7. PDF

You can magically display an HTML table or RowCollection in PDF format in your browser
using an Adobe Acrobat plug-in. This can be done by clicking on the PDF icon { }. To see
more on generating a PDF file (See Generating a PDF file from a RowCollection). This magic
request uses an PDFRequest class which is responsible for the magic.

15. Report Breaks
A report break is one or more Rows containing metadata about a group of Rows in a
RowCollection. For example, a report break might contain the average value of a column over

all the Rows in a RowCollection. Typically a Row containing a report break is inserted into the
RowCollection along with the Rows containing the actual data, but is displayed in a different
color to distinguish it from the data Rows.

15.1. Report Break Functions

There are five functions for which Report Breaks can be generated:

SUM – The sum of a series of values
AVG – The average of a series of values
COUNT – The number of values in a series of values
MAX – The maximum value in a series of values
MIN – The minimnum value in a series of values

15.2. Break Columns

Sometimes you will want to generate a report break for a subset of the Rows in a RowCollection.
For example, if your RowCollection has three columns CITY, STATE, and POPULATION
(listing the population of major cities) you may wish to generate a report break containing the
total population for each state. In this case the STATE column would be known as the break
column, since every time the value in this column changes, a report break should be generated
and inserted into the RowCollection (this assumes that the Rows are ordered by STATE). This is
what the RowCollection might look like, after the report breaks have been inserted:

Report breaks with break columns are also referred to as “normal” report breaks, as opposed to
overall report breaks, which are discussed in the next section.

15.3. Overall Report Breaks

An overall report break is uses all the Rows in the RowCollection to generate its data. This
means that overall report breaks do not have any break columns, since they are only generated at

the very bottom of the RowCollection. If the above example used an overall report break instead
of break columns, this is what it would look like:

It is also possible for both overall and normal report breaks can be included in the same
RowCollection:

15.4. Creating Report Breaks

In order to generate Report Breaks, you first need to create a ReportBreakCollection object:

ReportBreakCollection rbc = new ReportBreakCollection();

A ReportBreakCollection can contain multiple ReportBreak objects, each of which specifies a
report break which should be generated. To add a new ReportBreak to a ReportBreakCollection,
use the addNewReportBreak(String, List, String, boolean) method. The parameters to this
method are:

String pColumnFunctionToken – A constant defined in the ColumnFunctionToken class,
indicating what function (SUM, MAX, etc) the report break should use

List pFieldNames – A List containing the names of the columns for which report breaks should
be generated.

String pBreakColumnName – The name of the break column. For overall report breaks, this
should be null

boolean pAddOverall – If an overall report break should also be generated. Often when a
normal report break is generated, you also want an overall report break to be generated. When
this parameter is true an overall report break will be generated in addition to the normal report
break (this parameter is ignored if the pBreakColumnName parameter is null, indicating that this
is already a normal report break).

To create the report breaks (both normal and overall) in the above example, we would invoke the
method like this:

List list = new ArrayList();
list.add (“ZPPOP”);
rbc.addNewReportBreak (ColumnFunctionToken.SUM, list, “ZPSTA”, true);

Note that ZPSTA and ZPPOP are the respective internal names of the State and Population
columns.

Finally, our ReportBreakCollection needs to be added to an SQLContext:

SQLContext context = new SQLContext();
context.setReportBreakCollection (rbc);

When this context is used to retrieve rows from the database, the report breaks will be inserted
into the context by the DataEngine.

16. HTML Helpers
The HTML helper classes allow programmers to generate JSP’s without having to code a lot of
Java or HTML. They are mostly designed to take in different DataEngine objects and generate
HTML output for them.

16.1. HTML Generator

HTMLGenerator is a convenience class for generating HTML code.

16.2. HTML Extractor

HTMLExtractor is a convenience class for extracting data out of a HttpServletRequest.

16.3. HTMLComparisonInput

This helper class can be used to automatically generate HTML code for input fields to match
search criteria for a given parameterized SQL String of an SQLContext. It also provides
functionality to extract parameter values for the search criteria entered by a user into an
SQLContext object.

This is the method used to generate input fields.

generateInput(SQLContext, HttpServletRequest, HttpServletResponse)

This is the method used to extract values from previously generated input fields.

loadSQLParameterValues(SQLContext, HttpServletRequest)

Example – Generate Search Criteria
The scenario is we want users to type in an email address and we will show them all the records
of the PLANETJ.USERS file that have the same email address. The following steps illustrate
how to go about doing this using the HTMLComparisonInput.

First we need to create an SQLContext containing the SQL for the record look up.

SQLContext context = new SQLContext(<system alias>);
context.setSQL(“SELECT * FROM PLANETJ.USERS WHERE EMAIL = ?”);

Next, in the JSP file we can use HTMLComparisonInput and context created to automatically
generate HTML code for input fields of the search criteria.

HTMLComparisonInput.generateInput(context, request, response);

The above code will generate the following.

The JSP will also need some button or link that will call code to do the following. After the user
types an email in, and clicks the link or button, the code being called will do the following.

HTMLComparisonInput.loadSQLParameterValues(context, request);

The context passed in should be the same context as created previously. This method call will
extract the value entered by the user and set it as a parameter value on the SQLContext object.
Then, to get all the records, do the following. It will return a RowCollection of all records in
PLANETJ.USERS that have the same email address as the one entered by the user.

DataEngine.getRows(context);

16.4. HTML Elements

All HTML generation can be done using convenience methods in HTMLGenerator. For more
functionality, however, individual HTML Elements should be created and used.

16.4.1. HTMLTable

This object can be used to auto generate HTML code to display results from a query. AN
HTMLTable also contains MagicRequests that can also be used to carry out other tasks such as:

1. Convert results to CSV, Microsoft Word, XML, or PDF
2. Print results
3. Sort results
4. Copy, Delete, Insert, Update, and View record(s).
5. Modify FieldDescriptors associated with the results.

Creating an HTMLTable
The following three constructors can be used to create an HTMLTable object. When an
HTMLTable generates HTML code for its results passed in, it needs a key to store the results (a
RowCollection) in the session. This is to allow any MagicRequests to access the results to carry
out their tasks. Also, when dealing with Row MagicRequests (insert, update, etc…), the HTML
table needs a key for storing a Row in the session.

By default, the RowCollection session key is IDataEngine.ROW_COLLECTION, and the Row
session key is IDataEngine.ROW. If multiple HTMLTables are on a page or if you want to store
the RowCollection or a Row in the session using a different id, then you can specify that key in
the constructor when creating the HTMLTable object.

HTMLTable htmlTable = new HTMLTable();
HTMLTable htmlTable = new HTMLTable(String);
HTMLTable htmlTable = new HTMLTable(String, String);

If another RowCollection needs to have HTML code generated for it, rather than creating a new
HTMLTable object and setting all its properties again, you could use the same HTMLTable
object except just set its new RowCollection session key and Row session key if needed. Then
you could call the generate method passing in the second RowCollection.

htmlTable.setRowCollectionId(String)
htmlTable.setRowId(String)

Turning MagicRequests On or Off
An HTMLTable object contains a bunch of methods that can be used to turn MagicRequests on
or off.

The following methods can be used to turn on or off the corresponding link (icon).

setMagicRefresh(boolean);
setMagicExcelLink(boolean);

setMagicMSWordLink(boolean);
setMagicXMLLink(boolean);
setMagicPDFLink(boolean);
setAllowPrint(boolean);

 & setMagicEditFD’s(boolean);
 & setMagicSortingLinks(boolean);

Also, all of these can be turned on or off at once with a call to this method.

setAllMagicLinks(boolean);

The following methods can be used to turn on or off the corresponding button with the given
name.

Insert setMagicInsert(boolean);
View setAllowViewDetails(boolean);
Edit setMagicEdit(boolean);
Copy setAllowRowCopy(boolean);
Delete setMagicDelete(boolean);
Delete All setAllowDeleteAllRows(boolean);
Update All setUpdateable(boolean);

Also, all of these methods can be turned on or off all at once with a call to the following method.

setAllRowFunctions(boolean);

Other HTMLTable Attributes

HTMLTable Selection Mode
The HTML code for the results (RowCollection) may be modifiable, meaning you might need to
be able to select a Row or Rows to insert, edit, delete, or perform other functionality. There are
three different selection types, which are all public static constants on HTMLTable.

1. MULTIPLESELECTION: Allows the user to select multiple records using check boxes.

2. SINGLESELECTION: Allows the user to only select one record using radio buttons.

3. NOSELECTION: Doesn’t allow the user to select any records.

To change the selection mode of the generated HTMLTable, use the following method passing in
one of the HTMLTable constants.

setSelectionType(int);

HTMLTable style sheet
A style sheet can be added to the HTMLTable to allow result tables to have somewhat of a
custom look and feel.

Generate HTML Code For RowCollection (Results)
To generate HTML code for a RowCollection, after the HTMLTable object is created and set up
properly, call the following method:

generateTable(request, response, RowCollection, List);

This method will generate and return HTML code to display a table of results from the given
RowCollection. The List passed in as a parameter contains the column names in the
RowCollection to generate HTML code for. If List is ‘null’ or empty, then all of the
RowCollection’s columns are used for generation.

16.4.2. HTMLField

To allow for ease of displaying a Field’s value in HTML, the HTMLField object has a bunch of
generate methods to which can be used in different scenarios. When generating an HTMLTable,
HTMLFields are automatically generated. If, however, you have a custom JSP that has Row
details, you may want to display certain Fields in a certain way. This is where creating a
separate HTMLField object to generate HTML code for a Field can come in handy.

Creating an HTMLField
There are two ways to create an HTMLField object. With or without specifying the Field to
generate HTML code. If you don’t specify the Field in the constructor, then it must be set before
auto generating any HTML code. The latter method can be useful in that you only need to create
one instance of an HTMLField, and then just change its Field object before generating HTML
code. The following two constructors can be used to create an HTMLField.

HTMLField htmlField = new HTMLField();
HTMLField htmlField = new HTMLField(Field);

Changing the HTMLField’s Field
To get or set the HTMLField’s object use the following methods on the HTMLField object.

getField();
setField(Field);

Methods to Generate HTML Code
All of the following methods can be called to generate different output for the Field in HTML.

Generate Field’s value as text so it is uneditable.

generateDisplayValue(request, response)

Generate Field’s value as input field. Both methods allow for the HTML input to have
additionally supplied attributes. The second method allows for the size of the input to be set.

generateInput(String, request, response)
generateInput(int, String, request, response)

Generate Field’s label (Field’s external name).

generateLabel(request, response)

There are also convenience methods that do combinations of the above methods. For example,
generateLabelAndField(request, response), generates the Field’s label and display value. See
DataEngine JavaDocs for the rest of the convenience methods.

Note: Calling one of HTMLField’s generateInput() methods will automatically generate the
proper HTML element depending upon the Field and its attributes. For example, if a Field
has possible values, then the HTMLField will generate a pick list. If a field is a IBoolean
field, it will generate a checkbox.

16.4.3. SimpleHTMLSelect

This object can be used to generate HTML list or pick list. Rather than coding all the HTML
manually, you can just pass in a List, String[], or RowCollection and all the HTML code for the
pick list will be automatically generated.

Creating a SimpleHTMLSelect
There are two SimpleHTMLSelect constructor methods. One takes in a String id to be used for
the name of the HTML pick list.

SimpleHTMLSelect pickList = new SimpleHTMLSelect();
SimpleHTMLSelect pickList = new SimpleHTMLSelect(String);

If a String id is not specified in the constructor, it can be set with the following method.

setId(String);

Note: if ‘null’ or empty string are passed as a parameter for the SimpleHTMLSelect’s id,
then the HTML list or pick list generated will not have a name and therefore its selected
value cannot be extracted.

List or Pick List
If you want a list to be displayed rather than a pick list when generating HTML, the
SimpleHTMLSelect’s size should be set to the number of items you want shown at once in the
list. The following method can be called on a SimpleHTMLSelect object to set the size of the
list.

setSize(int)

Note: any value less than or equal to one will generate a pick list.

Changing Generated List to Multiple Selection
A generated list from the SimpleHTMLSelect can be either single or multiple selection. To set
the selection mode of the list, call the following method on the SimpleHTMLSelect object

passing in one of two constants of HTMLSelect (SINGLE_SELECTION or
MULTIPLE_SELECTION).

setSelectionMode(int).

Note: pick lists cannot be multi selectable.

Methods to Generate HTML
To generate a list or pick list from a String[], use one of the following methods. The first
String[] in each method are the values for each option in the list or pick list. The String and
String[] attribute following the first String[] are to denote what values should be selected. In the
last two methods, the first String is to allow setting attributes for the HTML select.

generate(String[], String)
generate(String[], String[])
generate(String, String[], String)
generate(String, String[], String[])

To generate a list or pick list from a List of objects, use one of the following methods. The first
String is to allow the setting of additional attributes on the HTML select. The first List is the
values for each option in the HTML select. And the last parameter is to denote the options to be
selected.

generate(String, List, List)
generate(String, List, String)

To generate a list or pick list from a RowCollection, use the following method. The first String
is for the list or pick lists’ attributes. The second String is the name of the column in each Row
of the RowCollection containing the value for the option. The third String is the name of the
column in each Row of the RowCollection containing the display value for the option. And the
fourth String is the value to be selected.

generate(String, String, String, String, RowCollection, request, response)

17. Logging with Log4J
Exception handling and logging is an important part of the DataEngine. If there is a problem, we
need to have a place to look to see what went wrong. Currently most applications complain
about the performance of logging exceptions and messages. Log4J presents a logging
mechanism that claims it performs very fast, in fact as fast as System.out.print() in some cases.

Here is the data you will need in your class declaration.

import org.apache.log4j.*;
....
public final String className = XXXClass.class.getName();
static Category cat = Category.getInstance(className);

Please name these variables with the same name for consistency.

Log4J provides 5 different logging levels in which you will use in different situations throughout
the code. Here they are.

• Debug – This is the most verbose and should be used to output messages such as stating a
variable’s value or other situations when debugging.

• Info – Use info if you want to print out some info about the current status of the
application

• Warn – Use this if a problem has or might occur.
• Error – Used when an error or exception occurs, but the application can continue.
• Fatal – This means we have problems. Print out fatal statements in catch blocks when an

exception is thrown.

Here are some examples of logging messages.

cat.debug(“The value of {amount} should not be null. Amount = ” + amount);
cat.info(“Successfully connected to System.”);
cat.warn(“Could not close the output stream.”);
cat.error(“Exception in finally clause, but we are going to try to continue.”);
cat.fatal(“Exception trying to run query.”);

There are a few tips and techniques acquired from the Log4J website. The biggest point to make
here is to ensure we are not creating new String Object through concatenation on log points.
Look at the following line of code.

cat.info(“Successfully connected to ” + systemName + “ with UserId = “ + userId + “
and password = “ + password);

If logging is turned off or to a level that does not print out info log points, then by having this
line of code in our application, we would be creating many String Objects through concatenation
unnecessarily. Instead do this.

if (cat.isEnabledForPriority(Priority.INFO)){
 cat.info(“Successfully connected to ” + systemName + “ with UserId = “ + userId

+ “and password = “ + password);
}

By doing this, we would only concat the strings if logging was turned on at the INFO level.
Speaking of turning logging on and off, this is done from the DataEngine Admin Servlet. This
can be accessed by clicking on the link to the left of the page when logged on.

18. PlanetJ Helpers
All Helper and Descriptor classes are generic to any application and can be used to convert any
Object to any type of file.

18.1. CSVHelper

This class will assist in creating CSV files. Although it's called CSVHelper (Comma Separated
Variable), the delimiter may be any 'char' value.

Currently this is a magic function (See Magic Request CSV/Excel).
RowCollection.toCSV uses CSVHelper (See Generating a CSV file from a RowCollection).
Row.toCSV uses CSVHelper (See Generating a CSV file from a Row).
(See Generating a Microsoft Word file from a RowCollection)
(See DOCHelper)

18.2. DOCHelper

This class will assist in creating DOC .doc Microsoft Word files.

Currently this is a magic function (See Magic Request Microsoft Word).
RowCollection.toDOC uses DOCHelper (See Generating a Microsoft Word file from a
RowCollection).
Row.toDOC uses DOCHelper (See Generating a Microsoft Word file from a Row).
(See CSVHelper)

18.3. FDFHelper

This class will assist in creating FDF files. FDF files are opened with Adobe Acrobat or Acrobat
Reader. The data in the FDF will be plugged into the corresponding form field in the PDF. This
is normally used along with a PDF template to plug the FDF data into.

RowCollection.toFDF uses FDFHelper (See Generating an FDF file from a RowCollection).
Row.toFDF uses FDFHelper (See Generating an FDF file from a Row)

18.4. PDFHelper

This class will assist in creating PDF files.

Currently this is a magic function (See Magic Request PDF).
RowCollection.toPDF uses PDFHelper (See Generating a PDF file from a RowCollection).
Row.toPDF uses PDFHelper (See Generating a PDF file from a Row).

18.5. XMLHelper

This class will assist in creating XML files.

Currently this is a magic function (See Magic Request XML).
RowCollection.toXML uses XMLHelper (See Generating a XML file from a RowCollection).
Row.toXML uses XMLHelper (See Generating a CSV file from a Row).

18.6. QIFHelper

This class will assist in creating QIF files which can be imported into Quicken.

In order to generate a QIF file, create a QIFFileDescriptor that defines attributes about a QIF file.

QIFFileDescriptor fileDescriptor = QIFHelper.newQIFFileDescriptor();;

// If you want to write the QIF data out to a file, set a file name
// property in the descriptor. If this file name is set, then the
// QIF data will be output to the file.
fileDescriptor.setFileName("C:\\Temp\\QifTest.qif");

After your QIFFileDescriptor is all set up, you must define a QIFTransaction. In this example I
am going to build a QIFBankTransaction which is a subclass of QIFTransation.

QIFBankTransaction bankTrans = new QIFBankTransaction();

 bankTrans.setPayee(“A-1 Sanitation”);
 bankTrans.setDate(new java.util.Date());
 bankTrans.setCategory("Utilities:Garbage");
 bankTrans.setNumber("Print Check");
 bankTrans.setTotal(-45.99);
 bankTrans.setMemo(“1/1/2002 to 3/31/2002, Acct#123456789, Bill#:987654321”);

Generate a QIF file by passing in bankTrans, and fileDescriptor

QIFHelper.singleton().generateQIFFile(bankTrans, fileDescriptor);

19. Transactions
When a connection is created, its auto commit function is set to false. This is to enable multiple
transactions to occur before committing to the database. For example, say there were a series of
inserts, updates, and/or deletes that needed to take place. And if one of them should happen, all
of them should. This would allow a rollback to occur if one of them failed. If they were all
successful, then a commit could be applied.

Appendices

1. Setting Up WOW With IBM’s RAD 6.0

Follow the steps below to setup a WOW dynamic web project:

• Switch to the Java Perspective.
• From the left navigation (package explorer), right click and select to create a new

dynamic web project.
• Leave the settings (including JSP settings) as their defaults. The project should be

assigned the Websphere 6.0 test server.
• You should not have to change the project’s properties (no need to add external jars to the

Java Build Path)
• Copy in the following (if you prefer, you can use drag and drop or copy and paste,

instead of the import feature):
• Copy any existing custom Java source (if applicable) into the web project's source file

(default is Src), unless you have an external Java project.
• Copy resource folders (i.e. dataengine, wow, and user.xxx (if applicable)) from Tomcat

project webapp folder (ex. wow64).
• Copy the web.xml and WOW license file (xxx.lic) from Tomcat WEB-INF folder and

place them in the same WEB-INF folder in your web project.
• Copy the jars from your Tomcat lib folder to the web project lib folder.
• Click on the server tab at the bottom. Right click and choose "Add/Remove Projects"

(same as publish). Add the default EAR project (created automatically when your web
project was created) by clicking to move it to the right side. Click OK or Apply. You
should see files getting copied to the test server.

• Start the test server. You should see startup messages for the WOW application.

	1. Using the PlanetJ WOW DataEngine
	2. Introduction to Java and JSP’s
	3. Customizing User Interfaces
	4. Business Programming With WOW
	5. SignOn (Authentication) and Usage Logging
	6. Connections
	7. DataEngine
	8. SQLContext
	9. RowCollections
	10. Rows
	11. Fields
	12. Working With FieldDescriptors (FD’s)
	13. Possible Values (PV)
	14. “Magic” Requests
	15. Report Breaks
	16. HTML Helpers
	17. Logging with Log4J
	18. PlanetJ Helpers
	19. Transactions
	Appendices

