

PlanetJ Corporation
[support@planetJavaInc.com]
[info@planetJavaInc.com]
[www.PlanetJavaInc.com]

WEB OBJECT WIZARD: Builders Guide [WOW 6.5 - 7.0]

License and Versions
Getting Started

Starting WOW
Sign-on Fields
User Registration

Personal Info
Sign On Info

Understanding Development Accounts - Shared/Individual Accounts
Modifying the WOW Interface

Hiding the Side Steps
Creating Connections

Creating a Connection Definition
Connection Spec
Options
Advanced

Specifying a Library List for a Connection
Connecting to Different Databases

Connecting to MySQL
Connecting to Oracle
Connecting to MS SQL Server
Connecting to Microsoft Access and Excel
Connecting to PostgreSQL
Connecting using jTDS jdbc driver (open source)

Working with Connections
Creating Applications

Defining the Application
Basic
Display
Advanced
Alerts
Internal

MetaData Application Libraries
Creating Application Libraries
Using Application Libraries
Using the CPYWOWENV Command (AS400/iSeries/IBM i Only)
Making a Copy of MYSQL Metadata Library

Activating Alerts for an Application

 ©Copyright PlanetJ Corporation 2011

mailto:support@planetJavaInc.com
mailto:support@planetJavaInc.com
mailto:support@planetJavaInc.com
mailto:support@planetJavaInc.com
mailto:support@planetJavaInc.com
mailto:info@planetJavaInc.com
mailto:info@planetJavaInc.com
mailto:info@planetJavaInc.com
mailto:info@planetJavaInc.com
mailto:info@planetJavaInc.com

Configuring an Email Sever
Configuring an Application to Send Email Alerts

Controlling the Login
Sign On Types

Creating Operations
User Operations

Basic
Display
Advanced
Administration
Internal

SQL Operations
HTML Code Operations
Other Operation Types

Operation Types
Controlling the Display Order of Operations
Setting a Next Operation
Using a Please Wait Page

Creating a Custom Please Wait Page
Selecting Records

Basic SQL Queries Using the SELECT Statement
Microsoft SQL Server 2000 & Up
Microsoft Access

Other Queries Using the SELECT Statement
Setting Key Position Field to Select Unique Records
SQL Tips

Case Sensitivity
Optional Values

Inserting Records
Basic SQL Queries Using the INSERT Command
Inserting Records without SQL Commands
Inserting Records Using Parsing
Joined Inserts

Restrictions
Transactions

Updating Records
Basic SQL Queries Using the UPDATE Command

Using a WHERE clause with the UPDATE statement
Joined Updates

Restrictions
Transactions

Deleting Records
Basic SQL Queries Using the DELETE Command
Deleting Rows Without SQL Commands
Joined Deletes

Restrictions
Transactions

Field Descriptors
Field Descriptor Manager

Library Functions
Table Functions

Editing Rows Within the Field Descriptor Manager
Basic Settings

 ©Copyright PlanetJ Corporation 2011

Display Settings
Possible Value Settings
Advanced Settings
Authorization Settings
Additional Settings
Database Settings

Field Descriptor Views
Table FD's
Shared FD's
Usage IDs
Search By
Quick Edit

Prompting Using Field Descriptors
WOW Features

Derived Fields
Creating a Derived Field Descriptor

Parameters
SQL Prompt Parameters
Field Descriptor Prompt Parameters
Row Parameters
User Parameters
Usage ID Parameters
Table Parameters
Parameter Parameters
Context Parameter Parameters

Using Context Parameter parameters in Possible Values
Runtime Parameters
Request Parameters
Session Parameters
Special User Library Parameter
RowCollection Parameters [Minimum Version: WOW 7.0]
Defaulting Parameter Values

Operation Property Groups
AutoRun {}
Browser {}
Chart {}
Config {}
CSV {}
DetailDisplay {}
DisplayColumns {}
Email {}
FieldSet{}
Join {} [PRO]
LayoutDisplay {}
OperationLabels {}

Horizontal Parameters
OperationSettings {}
OptionalSignon {}
Paging {}
ParameterOperators {}
PDF {}
PleaseWait {}
PossibleValues {}

 ©Copyright PlanetJ Corporation 2011

ReportBreak {}
SignOn {}
SpooledFile{}
SQLContext {}
StoredProcedure {}
Styles {}
TableDisplay {}
Tabs {}
XLS {}

Sorting
Controlling the Sorting Behavior

Changing the Column Heading
Changing the Header Style

Associations
1-1 Association
1-Many Association
HTML Code Association

Full Field Rendering
HTML Reference Association
Associated Java Operation

Creating Associations
SQL Association Example
HTML Code Association Example

Overview
Create Employee Operation
Create HTML Code Association Operation
Set the Association to a Field

HTML Reference Association Example
Associated Inserts

SQL Associated Insert Example
Associated Updates

SQL Associated Update Example
Associated Deletes

SQL Associated Delete Example
Join Associations

Possible Values
Multiple Fields in Possible Values Drop Down
Possible Values and the – All – Value

Customizing the – All – Item
Further Customizing the – All – Item
Removing the – All – Item in a Search

Removing – Next – and – Previous – from Possible Value List
PV Multiple Selects
Possible Values Paging (Next/Previous)
Possible Values Grouping [Minimum Version: WOW 6.6 beta]
Possible Value Keys
Possible Values Selector
Possible Values Search

Steps to Utilize Possible Values Search Operation:
Using Possible Values Search to Populate Other Fields

Auto Population of Fields
Execution Groups

Create A Working Execution Group

 ©Copyright PlanetJ Corporation 2011

Blob File Upload and Download
Set Up File Upload

Set Up File Download
Work Flow

Example 1
Example 2

Advanced Work Flow
Context Menu

Controlling Actions in the Context Menu
Disabling the Context Menu
Removing Actions from the Context Menu
Showing Actions Only in the Context Menu
Suppressing Built-in Actions

Controlling the Context Menu Appearance
Using Different Action Descriptors
CSS Properties
Action Groups
Different Actions for Different Rows

Auto Complete
Configuring Auto Complete Fields
Auto Complete Properties [PRO]
Auto Complete Advanced Configuration

Formatted Display Value
SQL-based Auto Complete [PRO]

Using SQL-based Auto Complete
Derived Fields
Auto Complete Fields in Rows

Replacement Libraries
What is Replacement Library Support

For Example:
Four Ways to Implement Replacement Library Support

WOW Based
For Example:

Application Based
For Example:

User Based
For Example:

URL Based
For Example:

Replacement Library Implementation Precedence
For Example:

Please click here, WOW Builders Guide continues.

 ©Copyright PlanetJ Corporation 2011

License and Versions
This guide includes information for all editions of WOW including WOW Community Edition,
WOW Professional, and WOW Enterprise Edition. Your license agreement restricts you to
using only features that you are licensed for. Features licensed to Professional or Enterprise
are depicted as shown below:

WOW Edition Identifier Comments

WOW Professional Edition [PRO] This feature requires WOW
Professional Edition.

WOW Enterprise Edition [EE] This feature requires WOW
Enterprise Edition.

This guide may contain information for upcoming features not yet available to the user
community. These upcoming features will be indicated with [WOW x.x] where xx identifies
the version required.

From the WOW Builder screen, the key environment variables are shown below:

Project Schema: This is the MYSQL schema or the IBM i library that holds WOW metadata
such as operations, connections, etc.
Dev Schema: Advanced usage only. Indicates a current target library or schema.
WOW Version: The current version of WOW code.
License: The license running this WOW instance. Values include COMMUNITY,
PROFESSIONAL, or ENTERPRISE.

Getting Started
Starting WOW

To start Web Object Wizard from the PlanetJ website, navigate to the following address:
http://www.planetjavainc.com/wow/WOWBuilder
If you have WOW installed on a local computer or intranet, simply use your web browser
point to the location where WOW is installed on your system. This would most likely be:

 ©Copyright PlanetJ Corporation 2011

http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder
http://www.planetjavainc.com/wow/WOWBuilder

http://my_server_name/wow65/WOWBuider
The my_server_name should be replaced with the name of your web server (e.g. localhost,
192.168.1.10, etc.). Version 6.5 is activated using the context wow65. Various versions of
WOW can be accessed accordingly (for example, WOW 6.4 would use the context wow64. A
sign-on page will appear once WOW has been started in the browser.

Sign-on Fields

■ E-mail (Required Field) - The e-mail address used during the registration process.
The same information will be used to login to WOW.

■ Password (Required Field) - The unique password specified during the registration
process.

User Registration

Clicking on the Click here to sign up! hyperlink will take you to the User Registration page.
Throughout this guide as well as WOW, required fields will be indicated by a red asterisk
(*). After all relevant information is entered, click the Sign Up button to add the new
registered information into the database. The specified e-mail address and password can
now be used to log into WOW.

 ©Copyright PlanetJ Corporation 2011

http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider
http://my_server_name/wow65/WOWBuider

Personal Info

■ First Name (Required Field) - The first name that will be used in conjunction with
WOW.

■ Last Name (Required Field) - The last name that will be used in conjunction with
WOW.

■ Work Phone # - The optional phone number used to contact the user.

Sign On Info

■ E-Mail (Required Field) - The e-mail address which will be used to log into WOW.
■ Password (Required Field) - The password used to log into WOW. The maximum

length is 10 characters. Passwords should be as unique as possible; it is
recommended to use a combination of letters and numbers and is not a dictionary
word.

Understanding Development Accounts - Shared/Individual Accounts

A WOW development account (keyed by EMAIL) can be created as a "shared" account or
an individual account. Accounts are completely separated from each other and do not share
any resources such as connections, operations, etc. A "shared" account is a generic account
where multiple developers share the same email such as AR_REPORTS@MYCOMPANY.COM.
An individual account is typically used by a single developer and all resources are separate
(e.g. John@acme.com).
If an organization wishes to share WOW resources amongst multiple developers they should
use a generic and shared account. Use individual accounts if development is to be restricted
by individual with no need to share resources.

 ©Copyright PlanetJ Corporation 2011

The account email and password can be changed in the WOW Utilities application using
the "preferences" menu item. WOW Utilities can be access from the main WOW builder page
under "Development Tools".

Modifying the WOW Interface

Hiding the Side Steps

To collapse (or hide) the side steps panel, click the Hide Side Steps menu option
immediately below the header graphic.

Once you click this option, the side steps panel will collapse and shift all of the screen
contents to the left. Also, the menu option will change to say Show Side Steps. This option
will reverse the changes and reveal the side steps panel.

 ©Copyright PlanetJ Corporation 2011

Creating Connections
Creating a Connection Definition

After successfully signing onto WOW, you should see the main screen for Web Object
Wizard:

Before creating an application, a database connection must be defined. This connection can
be to any database that is compatible with WOW. To setup the new connection, click on
either the Setup Connections link in the side steps panel or the Connections button in the
toolbar. Then, click on the Create Connection button below the list of connections to bring
up a screen similar to this:

 ©Copyright PlanetJ Corporation 2011

Connection Spec

■ JDBC Driver (Required Field) - The type of JDBC you will be using to connect to the
database. This specifies the specific class that you will use to access the database.

○ AS/400 Native - Use when your data resides on the AS/400 and your application
runs directly on the AS/400.

○ AS/400 Remote - Use when your data resides on the AS/400 and your
application server does not run on the AS/400.

○ AS/400 Command & Program Call - For future support.
○ DB2 (Local) - Use when your data resides in DB2 and your application runs on

the same server that contains DB2.
○ DB2 (Remote) - Use when your data resides in DB2 and your application runs on

a different server.
○ MS Access/Excel (ODBC) - Use when your data resides in an Excel spreadsheet

or a MS Access database connected through a System DSN.
○ MySQL - Use when your data resides in MySQL.
○ PostgreSQL - Use when your data resides in PostgreSQL.
○ ORACLE (Remote) - Use when your data resides in ORACLE.
○ SQL Server - Use when your data resides in Microsoft's SQL Server.

 ©Copyright PlanetJ Corporation 2011

■ Alias (Required Field) - Any text which uniquely identifies the database connection.
Entries should be easily associated with the connection being created. The maximum
entry is 50 characters. The Connection Alias is used when looking up field descriptors
and normally should not be edited after its creation.

■ URL (Required Field) - The URL of the JDBC database to be connected to. This URL
will be specific to the type of database you are connecting to. This URL is where your
database information is located.

■ Properties - Specific properties that are set in the specific connection you have
created. Refer to each JDBC driver for more information.

■ User ID (Required Field) - An ID that will be used to connect to a specific database.
This must be a valid user ID for the database that you will be connecting to. All
database operations will be executed through this user ID.

■ Password (Required Field) - The password which corresponds to the user ID used to
connect to a specific database. This must be a valid password for the user ID you are
using.

Options

■ View Advanced Settings - Shows the Advanced settings section.
■ Auto Verify - Automatically verifies the connection settings by attempting to connect

to the database upon insertion. This will return an error if it is unable to connect.

Advanced

■ Min. Connections (Required Field) - The number of connections that will be created
when the application first starts up. The maximum value is 10. The default value is 2.

■ Max Connections (Required Field) - The maximum number of simultaneous
connections allowed for the database connection. The maximum number of
connections used can have a significant effect on the performance of the system; the
number will vary based on the power of the system. The default value is 10.

■ Orphan Timeout (Required Field) - The maximum number of seconds that a
database transaction is allowed to take. When a database transaction takes longer
than the allocated time, it is terminated and the connection is made available for a
new transaction. This prevents a database transaction from hanging and permanently
tying up a connection.

■ Clean Up Timeout (Required Field) - After the specified amount of seconds, the
program will close and reopen its connection. Many databases only allow connections
to remain open for a certain amount of time. This setting helps ensure that a
connection will not time out, and if such occurs, it will be reopened.

■ Connection Class - Used to enhance or modify the connection using a java
class. For example, a java class could be written that changes the theme or header
when running against test data rather than live data.

How Connection Pools Work

Connection pooling has become the standard for middleware database drivers. The process of
creating a connection, always an expensive, time-consuming operation, is multiplied in these
environments where a large number of users are accessing the database in short, unconnected
operations. Creating connections over and over in these environments is simply too expensive.
The transaction profile for Web applications, probably the most common application in use today, is
that of a large number of users performing short, discrete database operations. These applications
usually perform work centered around creating a web page that will be sent back to the user's
browser. Transactions are generally short-lived, and user sessions are often limited in time.

 ©Copyright PlanetJ Corporation 2011

A connection pool operates by performing the work of creating connections ahead of time, In
the case of a JDBC connection pool, a pool of Connection objects is created at the time the
application server (or some other server) starts. These objects are then managed by a pool
manager that disperses connections as they are requested by clients and returns them to the pool
when it determines the client is finished with the Connection object. A great deal of housekeeping
is involved in managing these connections. When a WOW Operation is executed, an unused
connection from the pool is checked out, SQL is executed using the Connection, and then the
Connection is returned to the available pool.

 ©Copyright PlanetJ Corporation 2011

Specifying a Library List for a Connection

For IBM i, one of the properties for a connection is the library list to be used. This can be
especially useful when the connection is used for calling a stored procedure or SQL trigger.
To specify the library list, append the "libraries" property to the connection's Properties
field.
For example, the connection properties might be changed to:
;prompt=false;trace=false;libraries=*LIBL,lib1,lib2,lib3

Here is a screenshot of some sample properties:

With this example, the connection will append libraries lib1, lib2, and lib3 to the end of the
default library list.

NOTE: This example applies to the iSeries (AS/400). For other platforms, refer to the
appropriate JDBC documentation.

IBM Toolbox for Java Details: http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/
index.jsp?topic=%2Frzahh%2Fpage1.htm

 ©Copyright PlanetJ Corporation 2011

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzahh/page1.htm

Connecting to Different Databases

WOW can connect to any database that supports a JDBC 2.0 driver. This allows WOW
applications to seamlessly combine data from any corporate data repository regardless of
its location and RDBMS vendor. Below is a list of specific databases and what URL's are
needed to connect to each of them. Replace the IP address listed with the IP address used
to connect to your own database.

■ AS/400 (iSeries) - jdbc:as400:66.166.144.20
■ SQL Server - jdbc:microsoft:sqlserver://66.166.144.20
■ Oracle - jdbc:oracle:thin:@66.166.144.20:1521:METADATA
■ DB2 - jdbc:db2://66.166.144.20/DB_NAME
■ MySQL - jdbc:mysql://localhost/pjsys64
■ ODBC - jdbc:odbc:Data Source Name
■ PostgreSQL - jdbc:postgresql://66.166.144.20/DB_NAME
■ jTDS (used for SQL Server) - jdbc:jtds:sqlserver://66.166.144.20/DB_NAME

NOTE: Replace METADATA (Oracle), DB_NAME (DB2, PostgreSQL), or pjsys64 (MySQL) with
the your database name. For ODBC, replace Data Source Name with the name of your DSN
(which must be a system DSN that points to the desired Access database on your machine).
Connecting to MySQL

The connection properties that are unique to MySQL are the URL, Driver, User ID, and
Password. They must be exactly as follows:

■ URL - jdbc:mysql://localhost/pjsys64 (where localhost is your IP address and
pjsys64 is your database)

■ JDBC Driver - MySQL (com.mysql.jdbc.Driver)
■ User ID - WOW
■ Password - wow

Here is a sample MySQL connection:

 ©Copyright PlanetJ Corporation 2011

If you want different properties for User ID and Password, you will have to add records in
the mysql.user table. Please consult the MySQL Reference Manual for details on how to
create new user accounts.

MySQL Manuals: http://dev.mysql.com/doc/

NOTE: User ID and Password are case sensitive in MySQL.
Connecting to Oracle

The connection properties that are unique to ORACLE are the URL, Driver, User ID, and
Password. They must be exactly as follows:

■ URL - jdbc:oracle:thin:@localhost:PJSYS64 (where localhost is your IP address
and PJSYS64 is your database)

■ JDBC Driver - ORACLE (Remote) (oracle.jdbc.driver.OracleDriver)
■ User ID - Any valid user ID
■ Password - Any valid password

Here is a sample Oracle connection:

 ©Copyright PlanetJ Corporation 2011

http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://dev.mysql.com/doc/refman/5.0/en/adding-users.html
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Oracle SQL Docs: http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm

NOTE: Since Oracle has a different jar for each of their releases, Oracle users may have
to manually upgrade their JDBC jar with the version for their database. WOW’s default
ojdbc14.jar needs to be the same one as the one included in your installed Oracle version
(e.g. oracle/product/10.2.0/db_1/jdbc/lib/ojdbc14.jar).

Connecting to MS SQL Server

WOW supports MS SQL Server 2000 and above, which is supported by the latest JDBC
driver. You may have connection problems if trying to connect to a version under MS SQL
Server 2000.
URL - jdbc:microsoft:sqlserver://hostname:port;databasename=dbname
Example: jdbc:microsoft:sqlserver://192.169.1.71:1433;databasename=Northwind

Web Object Wizard must be able to resolve the host name or specified IP. Port 1433
is the default port and is optional. A particular database instance can be identified by
databasename.

Connection Properties can be supplied on the connection to influence driver behavior.
http://msdn.microsoft.com/en-us/library/ms378988.aspx

For example, the following may be specified on the connection
properties: responseBuffering=adaptive;sendStringParametersAsUnicode=false;

 ©Copyright PlanetJ Corporation 2011

http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx
http://msdn.microsoft.com/en-us/library/ms378988.aspx

SQL Server Docs: http://msdn.microsoft.com/en-us/library/bb545450.aspx

Connecting to Microsoft Access and Excel

Web Object Wizard supports Microsoft Access and Excel 2000 or above, which is supported
by the latest JDBC-ODBC driver. You may have connection problems if trying to connect to a
version under Microsoft Access/Excel 2000. To connect to Access or Excel, you must create
an ODBC System Data Source on the same system that you have your application server
installed. The DSN must be pointed to your desired Access database or Excel worksheet.
URL - jdbc:odbc:data_source_name
Example: jdbc:odbc:Northwind (connecting to a MS Access database Northwind)

WOW must be able to resolve the data source name.

See the Interfacing WOW with Excel document for more details.

Connecting to PostgreSQL

The connection properties that are unique to PostgreSQL are the URL, Driver, User ID, and
Password. They must be exactly as follows:

■ URL - jdbc:postgresql://hostname:port/databasename (where hostname is
your IP address, port is an optional port # (default is 5432), and databasename is the
database)

■ JDBC Driver - PostgreSQL (org.postgresql.Driver)
■ User ID - Any valid user ID
■ Password - Password for above User ID

Here is a sample PostgreSQL connection:

Optional Properties include: ssl, sslfactoryarg, compatible , protocolVersion ,
loglevel , charSet , allowEncodingChanges and prepareThreshold.

 ©Copyright PlanetJ Corporation 2011

http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://msdn.microsoft.com/en-us/library/bb545450.aspx

NOTE: You'll need to download the lastest postgresql jar from http://jdbc.postgresql.org

Connecting using jTDS jdbc driver (open source)

The open source jTDS driver can be used to connect to SQL Server.

The connection properties that are unique to jTDS are the URL, Driver, User ID, and
Password. They must be exactly as follows:

■ URL - jdbc:jtds:sqlserver ://<server> [:<port>][/<database>] (where server
is your IP address, port is an optional port # (specify if not using the default), and
database is the database)

■ JDBC Driver - jTDS SQL Server JDBC Driver (net.sourceforge.jtds.jdbc.Driver)
■ User ID - Any valid user ID
■ Password - Password for above User ID

NOTE: For connection properties and more details, see http://jtds.sourceforge.net/faq.html
NOTE: You'll need to download the lastest jTDS jar from http://jtds.sourceforge.net

 ©Copyright PlanetJ Corporation 2011

Working with Connections

You can manipulate your database connections, using the direct action buttons as well as
other actions on each connection row. Below is a screen shot of the Connections screen with
brief descriptions of available actions:

■ View Connection - Allows a user to view a selected connection that has been
previously created.

■ Edit Connection - Allow changes to be made to the selected database connection.
■ Copy Connection - Allows a user to copy the selected database connection.
■ Delete Connection - Deletes the selected connection. If you delete a connection,

you must make sure any operations that reference that connection are updated to
reference a working connection. Deleted connections cannot be restored.

■ Stop Connection - Closes down the selected connection. All cached field descriptors
and rows related to this connection will be cleared. This link should be used with
caution; any applications running that use this connection (including the Field
Descriptor Manager) will no longer function once the connection is stopped.

■ Start Connection - Starts the selected connection if it is not already started.
■ Restart Connection - Shuts down the connection (if started) and then restarts it. All

cached field descriptors and rows related to this connection will be cleared.
■ Create Connection - Creates a connection.
■ Delete Connection(s) - Deletes selected connection(s).
■ Edit FDs - Opens a new browser window containing the Field Descriptor Manager

application for the selected application.

 ©Copyright PlanetJ Corporation 2011

Creating Applications
Defining the Application

After creating a connection, follow the Setup Application(s) hyperlink in the side panel or
the Applications button in the toolbar. You will then see the Application Creation screen.

Basic

■ Name (Required Field) - The title or name for the application.
■ Description - A brief description of the application.

 ©Copyright PlanetJ Corporation 2011

■ Connection (Required Field) - An alias for the system on which the application is
located. This must be one of the connections already created. All connections, unless
otherwise specified, will use this connection.

■ Sign On Type (Required Field) - The type of security that your application will
require.

■ Initial Operation - The initial operation that the application runs when a user first
executes this application.

■ Sign On Operation - The user created Authentication Operation, if any, the
application will run when a user signs on to this application.

Display

■ Properties - Parameters to customize the look and some of the features of WOW.
Specifying different Property Groups allows for custom JSP’s and many other
possibilities. The default Property Group, Layout Display, allows for a custom header,
footer, body, and template. Only users familiar with JSP programming should attempt
to use these fields.

■ Theme (Required Field) - This will change the look and feel of the WOW application.
This includes backgrounds, links, buttons and general appearance of the application.
WOW comes pre-installed with several themes.

■ Company Name - The text entered in this field will be displayed in the left hand side
of the WOW header.

Advanced

■ Subclass -[PRO] The class name of the application’s main servlet. Unless the
application uses custom programming, this field should be left blank and the default
WOW servlet will be used. To use a subclass named MySubClass in the com.mypkg
package, specify: com.mypkg.MySubClss.

■ JSP File - [PRO]The name of the application’s main JSP. Unless the application uses
custom programming, this field should be left blank and the default WOW JSP will be
used. To use a JSP named myJsp in the "…\webapps\wow65\user\planetj\jsp" folder,
specify the following: /user/planetj/jsp/myJsp.jsp.

■ Optional Sign-On (Required Field) - For future support. If this option is selected, an
optional sign-on box will appear in the upper left hand side of the TOC.

■ Auto Run Status - Enabling Auto Run allows you to automate the distribution of data
via email (for Auto-run Email operations) and to automatically log incoming email.

Alerts

● [EE] See section Activating Alerts for an Application below for details. NOTE:
[Minimum Version: WOW 7.0]

Internal

■ ID (Required Field) - The ID of the application. This ID can be used for a reference to
the specific application. This field is set automatically by WOW.

After filling in the values for each field, click the Insert Application button to create the
application. This will bring you back to the main screen where you can begin creating
operations for your customized WOW application.

 ©Copyright PlanetJ Corporation 2011

MetaData Application Libraries

By default, the metadata for all applications created using WOW is stored in a single
library (PJUSER64) or (PJUSERxx) depending on your version of WOW. For more complex
environments with multiple applications with varying delivery schedules you can implement
multiple . For example, you may have two WOW applications running on your development
box and you wish to move one of these applications to a production environment. Since
metadata records for both applications are stored in the same files, you will, therefore,
have to copy records only corresponding to the application you want to move over to your
production environment without copying the records for the application that you do not wish
to move.

On the other hand, if your application were stored in two different libraries on your
development environment, then copying a single application to production would be
easy – you could just copy all of the files in the application's library over to production.
In general, each related group of WOW applications can be stored in its own application
library to facilitate any future moves or migrations. However, if you have no need to
move applications independently of each other, they can all exist in the same library. The
recommendation is to use a single metadata library unless you experience staging
problems.

Creating Application Libraries

The default application library (PJUSER64) was installed on the WOW metadata system
as part of the WOW installation process. In order to use any other application library,
that library must exist on the WOW metadata system. There are two ways of creating
a new application library. You could repeat the steps from the WOW general installation
which installed the PJUSER64 library, except this time give the installed library a different
name. An alternative is to create a new copy of the PJUSER64 library. Copying an existing
application library will of course copy all applications in that library. Copied applications are
independent of the original applications and can be modified or deleted without affecting the
original applications.

Using Application Libraries

When starting the WOW builder, the application library to be used can be specified directly
in the URL. For example, the following link would start the WOW builder using MYAPP as the
application library:
http://www.planetjavainc.com/WOWBuilder?_pj_lib=MYAPP

If no library is specified, the default application library used is PJUSER64. To start the WOW
builder in general using a particular application library, you append the WOW builder URL
with the string:
?_pj_lib=<APPLIB>

The ? designates the start of the URL parameters, _pj_lib is the name of the parameter
and <APPLIB> is the name of the application library in which all WOW metadata should be
stored. If one or more parameters are already present in the URL, replace the ? with the
parameter separator &:
&_pj_lib=<APPLIB>

Each application library contains its own applications, connections, operations, field

 ©Copyright PlanetJ Corporation 2011

descriptors, and user logins.

NOTE: Any user logins, connections, applications, operations, and field descriptors created
with the WOW builder in one application library cannot be accessed from any other
application library.
Using the CPYWOWENV Command (AS400/iSeries/IBM i Only)

If the metadata system that you are using is AS400/iSeries, you can use the CPYWOWENV
command provided in the PJSYS64 folder. This command copies a specified WOW library to
a new library and gives you the option to clear the files.
From the CL Command Prompt, enter PJSYS64/CPYWOWENV and press F4. You should
see the following screen:

Enter the source library (in most cases, this would be the PJUSER64 library). Enter the
name of the destination library. Specify whether or not the file data should be cleared or not
and press Enter. You have now successfully created an Application Library.

Making a Copy of MYSQL Metadata Library

If your WOW metadata is stored in MYSQL, you can use the MYSQL Administrator or
Workbench Application to save and restore a copy. You simply need to save a copy
of your source schema/library such as PJUSERxx and restore it with a name such as
MyProductionApp. Use this link for detailed directions on how to save and restore MYSQL
objects. MYSQL Backup and Restore

 ©Copyright PlanetJ Corporation 2011

http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm
http://www.siteground.com/tutorials/php-mysql/mysql_gui_tools.htm

Activating Alerts for an Application

NOTE: [EE][Minimum Version: WOW 7.0]

An application can be configured to send email alerts when failures occur within WOW
for the specific application. The alert email provides information identifying the failing
application, the application user, the failing operation, an approximate URL used, browser
information, error details, etc. The alert feature will try to limit alerts so that only one alert
is sent per day for a particular error.

Before any application can be configured to send alerts, you will need to configure at least
one email server for WOW to use to send email alerts:

Configuring an Email Sever

[EE] To add and email server entry for use by application alerts:

● Bring up the WOW Utilities menu from the WOW Builder (Development Tools > WOW
Utilities).

● From WOW Utilities, bring up the email server entries (Other > Email Server Entries -
Outgoing Email).

● If no email server entry is defined, continue with the remaining steps to add an email
server entry.

● Click on Add Entry.

 ©Copyright PlanetJ Corporation 2011

● Set the configuration settings to match your email server, then click on Add Entry:
○ Other Control Settings:

■ Control ID (internal ID for the server entry)
■ Default Server Entry? - Only 1 entry can be designated as the default

configuration to use.
○ SMTP Mail Server Settings:

■ Server IP Address - Set to the IP address of your email server.
■ SMTP Port Number - Set the port number to use. The default is 25 for

outgoing email.
○ Security and Authentication:

■ Connection Security - Set the security to match your email server (Never,
SSL, TLS). The default is Never.

■ Authentication Required - Does your email server require authentication
(user ID, password) for outgoing email?

■ User ID - Set the email server user ID if authentication is required.
■ Password - Set the email server password if authentication is required.

○ Email Address Settings (used for testing the configuration):
■ To Address - The to ID to use for testing the email connection.
■ From Address - The from ID to use for testing the email connection.

Configuring an Application to Send Email Alerts

 ©Copyright PlanetJ Corporation 2011

[EE] Once we have a use-able email server entry in place, any application can be configured
to send an alert message when failures occur.

● From the WOW Builder, bring up the list of applications.
● Edit the appropriate application entry:
● Move down to the Application Alert section and click on "Enable Application Alert" to

expand that section:

● Fill in the appropriate configuration settings and click on Update Application:
○ Enable Application Alert - enables alerts and expands this section to show the

other fields.
○ Email Server - Set to the email server entry to use for sending emails. If not

set, the default entry (if defined) is used.
○ Email From ID - the From ID to use for sending alerts
○ Email To ID - One or more comma separate email ID's to receive the alerts
○ Email Alert Title - optional field to change the email title from it's default.

NOTE: Generally, validation type errors, including SQL errors due to improper operation
configuration, do not trigger alerts.

 ©Copyright PlanetJ Corporation 2011

Controlling the Login

WOW allows users to login using different security schemes. This is important for
applications that require different forms of user authentication.

Sign On Types

■ HTTP Referrer
■ Local Users Only
■ Local Users Only or Operation System Profile
■ Operating System Profile - Users are required to sign on with a user ID and

password before using the application. The user ID and password must be recognized
by the database or operating system. The actual database access does not use this
user ID, it uses the one specified in the connection definition.

■ Personal Connection Pool - The Personal Connection Pool sign on validates a user
ID and password against the database, much like the Operating System Profile sign
on. However, when an application uses the Personal Connection Pool sign on method,
all database accesses by that application will be tied to the profile of whichever user
has signed onto the application and requested that database access. All other sign
on methods use a shared pool of database connections when accessing the database
– this can significantly improve performance but means that the database cannot
determine which particular user is accessing it, only which application is doing the
access. This sign on type should be selected when the database needs to know which
user is accessing it.

■ SQL Operation - Users must provide authentication information based upon the
fields specified in an SQL operation. A logical choice for these fields would be the user
ID and password; however, this option allows increased flexibility in that you can
choose any field in a file to authenticate against. For example, you may use a single
PIN field instead of the standard user ID and password combination.

■ Unsecured Sign On - Users are not required to sign on to the application – anyone
who knows the application’s URL can use it. This is the default selection.

■ User List Sign On

 ©Copyright PlanetJ Corporation 2011

Creating Operations
User Operations

Each application created with WOW contains different operations. These operations are
the backbone of any application created with WOW. There are many different types of
operations that can be created with WOW. Examples of these types are: SQL, HTML Code,
and Execution Group. Each available operation type will be described in greater detail in this
chapter.
To add operations to an application, select the application name from the list of applications
on the main menu. Next, follow either the Setup Operation(s) hyperlink in the side panel or
the Operations button in the toolbar. This will display all of the operations in the application.
Choose the Create Operation button to create a new operation.
The operation creation screen allows you to specify several different attributes of the
operation.

Basic

■ Label - A unique name identifying the application for the user that appears in a list
with all of the operations that have been created for the application.

■ Title - The title that will be displayed when the user is viewing the list of operations.
■ Operation Type - The type of operation you would like to use.
■ Description - A brief description of the purpose of the operation.
■ Operation Code - The actual code that will run when the user selects this operation.

For SQL Operations, this must be a valid SQL statement for the database the
application is connecting to. Incorrect code may cause WOW to return unfavorable
results.

■ Instructions - Text that will be shown to the user when the Operation is executed.
This text is shown if the operation is an SQL statement that contains "where
<column_name> = ?" where <column_name> is a valid column name from the
indicated table. It may include details on what the operation does, how it is run, etc.
This field may include actual HTML code to enhance the formatting. For example,
you may want to make the instructions stand out by specifying the text be heading
1: "<h1>Instructions for the Operation</h1>".

■ Database Explorer button - Launches an application in a separate window to assist
the user with building an SQL statement (for the Operation Code field). It provides
a list of fields for a specified table and and provides options to help build a basic SQL
statement. NOTE: [Minimum Version: WOW 7.0]

 ©Copyright PlanetJ Corporation 2011

Display

■ Allow Details - Determines whether or not the Details button is shown in the
results table. This button allows the user to view the contents of one row in detail. By
default, the Details button is shown.

■ Allow Inserts - Determines whether or not the Insert button is shown in the results
table. This button allows users to insert new rows into the table. By default, the Insert
button is shown.

■ Allow Updates - Determines whether or not the Update button is shown in the
results table. This button allows users to update the contents of a row. By default, the
Update button is shown.

■ Allow Deletes - Determines whether or not the Delete button is shown in the
results table. This button allows users to delete a row from the database. By default,
the Delete button is not shown.

■ Display Group - Determines how WOW separates different operations. All operations
with the same Display Group will be grouped together (in the table of contents or drop
down navigation area)when the application is run. Specifying a Display Group allows
related operations to be displayed next to each other. Any name that would help with
grouping the operations will work in this field.

■ Display Order - The order in which the operations should be displayed. Operations
with lower display orders are displayed before operations with larger display
orders. Display Order also determines the order of the Display Groups. Within a given

 ©Copyright PlanetJ Corporation 2011

Display Group, the lowest number in that set is shown first. The lowest number from
each Display Group is the used to determine the order of the Display Groups.

■ Display Columns - Shows which columns should be displayed. Typically, an SQL
operation will return multiple columns from a database table (or tables), and will
display all of these columns to the user. If you only want to display some of the
returned columns, list those columns in this field (separated by commas) and only
those columns will be shown.

■ Properties - Controls specialty features of the operation such as page breaks,
columns displayed, button text, business graphs, etc.

Advanced

■ Connection Alias - The database connection that was set up for the operation.
By default, operations use the connection alias specified in their application. If an
operation needs to use a different connection, select it in this field.

■ Operation Class - [PRO] A custom java class allowing you to override the execute
method to change the default operation behavior. For example, if a table is displayed
by the operation and there are no rows to display, you could instead display the add
screen.

■ Row Count - Specifies how many rows are displayed in the results table. If the
number of results is greater than this value, links are generated on the results table
allowing the user to page through it. The default is set at 50 rows. This field should be
adjusted based on your system performance and connection speed.

■ Row Coll. Class - [PRO] Specifies which RowCollection subclass this particular

 ©Copyright PlanetJ Corporation 2011

operation will use. To use a row collection named MyRowColl in the com.mypkg
package, specify the following: com.mypkg. MyRowColl

■ Row Class - [PRO] Specifies which Row subclass this particular operation will use. To
use a row subclass named MyRow in the com.mypkg package, specify the following:
com.mypkg. MyRow

■ Parameters JSP - [PRO] Parameters refers to the search prompts given when
using dynamic prompting in an SQL statement. Use this field to specify a custom
parameters JSP to replace the default for that particular operation. To use a JSP
named myJsp in the "…\webapps\WOW65\user\planetj\jsp" folder, specify the
following: /user/planetj/jsp/myJsp.jsp

■ Caching Level - Sets the caching level of the operation. Caching deals with how
WOW stores the information so it can be used later. It is similar to any other caching
that you would use with a web browser, etc.

○ Cache for 1 Day - Checks and stores cache for 1 day.
○ Cache for 1 Hour - Checks and stores cache for 1 hour.
○ Cache for 1 Week - Checks and stores cache for 1 week.
○ Cache for 15 Minutes - Same as check cache and store results, except the

results are only stored for 15 minutes. After that they are removed from the
cache.

○ Cache for 30 Minutes - Same as check cache and store results, except the
results are only stored for 30 minutes. After that they are removed from the
cache.

○ Check results after a DB read - After results are read from the database store
them in the cache.

○ Check cache and cache results - Check the cache before reading the database; if
the database is read, then store the results in the cache afterwards.

○ Check cache on DB read - Check the cache before reading the database.
○ No caching - Do not use caching for this operation.

■ JSP File - [PRO] The JSP file to use for displaying the results of this SQL operation.
This field currently gives five choices:

○ Existing List or Insert - If any records are returned, then list them. If not, go to
insert view.

○ Header/Detail Reports - Return results in a report format with header, details,
and footer.

○ Single Row Edit - Returns a single record in the details view with editable fields.
○ Single Row View - Returns a single record in the details view.

■ Details JSP - [PRO] Determines which JSP file to use when displaying the
details of a single result of this operation. To use a JSP named myJsp in
the "…\webapps\WOW64\user\planetj\jsp" folder, specify the following: /user/
planetj/jsp/myJsp.jsp

■ Parent Operation - Used to identify the tab parent operation when defining tab
operations.

■ Depends On - Advanced use only.
■ Usage ID - Can be assigned to identify a particular usage. This can be used to

dynamically copy data with the same usage ID. UI code can be written to look
for fields with a particular usage ID such as an electronic store where JSPs might
anticipate a RowCollection coming in with usage fields for ID number, image, price,
etc.

■ Execution Rule - Normally, when a user chooses to run an operation containing user
parameters, the operation is not run until after the user fills in values.

○ Prompt then Execute - When a user chooses to run an operation containing user
parameters, the operation is not run until after the user fills in values. This is
the default behavior.

 ©Copyright PlanetJ Corporation 2011

○ Execute then Prompt - When a user chooses to run an operation containing user
parameters, the operation is run first (using default values for the parameters)
then the user is prompted.

○ Execute Only - When a user chooses to run an operation containing user
parameters, the operation is run without ever prompting the user. This type
of operation works well for associated inserts, updates, and deletes where the
prompt parameters are actually set within code or grabbed from some other
source (like default values) where user prompting is not needed.

■ Next Operation - Allows the selection of another operation to execute when the
current operation completes. The current operation completes when a row is inserted,
updated, or deleted. At that time, the next operation is executed.

Administration

■ Security Type - [PRO] The type of security measures to use.
■ Security Level - [PRO] Security level is used in conjunction with the Security Type

feature.
■ Auto Run Op. - Allows you to specify an operation that will automatically run on a

set schedule. The pull-down for this field displays any available Auto Run operations
created within the application.

■ Execute Authority Operation - [PRO] Used to limit which users can view and
run the operation. All Authorization Operations defined for the current application
should appear in the drop down selection. If no operation is selected, all users will be
authorized to execute this operation.

■ Auto Run Status - This field only applies to Auto Run operations. Disabled means
do not run this operation, even when Auto Run is enabled for the application. Enabled
means always run this operation when Auto Run is enabled for the application.
Production Only means run this operation in the production environment only.
Development Only means run this operation in the development environment only.

Internal

■ Operation ID - The ID used for categorizing and tracking operations. WOW assigns
this value internally and cannot be changed.

■ Application - The application of which the operation is a part or member. Use the
drop down to change the application to which this operation belongs.

 ©Copyright PlanetJ Corporation 2011

SQL Operations

SQL operations are one of the more important operation types that can be created with
WOW. SQL stands for Structured Query Language. SQL is used to manipulate the data in
a database. Although SQL is not a difficult programming language to understand, it is very
extensive. The only SQL covered in this guide will be examples on how SQL works with
WOW. If you are unfamiliar with SQL, you will still be able to follow the examples in this
manual; however, it is highly recommended that you review the following SQL manuals and
tutorials before using WOW.

■ W3 Schools SQL (http://www.w3schools.com/sql/default.asp)
■ SQL Course (http://www.sqlcourse.com/)
■ PDF SQL Tutorial (http://www.thinkbrown.com/programming/sql_tutorial.pdf)

NOTE: The PDF SQL Tutorial link opens a Portable Document Format (PDF) file and you
must have Adobe® Reader® or Adobe Acrobat® to view this file. To download a copy of
Adobe Reader from the Adobe website, click on the icon below.

SQL Limitations: The WOW runtime engine parses the supplied SQL to enable prompting
and other parameter support. Due to varying levels of SQL support and features from
database vendors. WOW only supports a limited subset of SQL features.

UDF Support: User Defined Functions

WOW parses the SQL for variable substitution. To identify a SQL segment as a UDF you must name
UDFs like: myLogic_UDF
IE: select * from x.y where my_UDF(aFld) > 77

In this case, "my_UDF" is a function created by the user, we will require WOW

users to append "_UDF" in the UDF name.

 ©Copyright PlanetJ Corporation 2011

http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.w3schools.com/sql/default.asp
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.sqlcourse.com/
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf
http://www.thinkbrown.com/programming/sql_tutorial.pdf

HTML Code Operations

Like the SQL Operations described above, HTML operations use HTML to create operations
that display HTML code. The HTML Operations can create a new level of customization by
using HTML to enhance WOW Applications. Below is an example of an HTML Operation being
used to create a welcome screen for a WOW application.

 ©Copyright PlanetJ Corporation 2011

Other Operation Types

Operation Types

■ Associated Java Operation - [PRO] Specifies a Java class where actual code can be
executed.

■ Associated Join - [PRO] An operation that joins data from two separate systems.
■ Association 1-1 - An operation associated with a field. This operation will display a

single row.
■ Association 1-Many - An operation associated with a field. This operation will display

a results table (one or more rows).
■ Authentication - Authentication allows for added security when using a WOW

Application. Each user will have to enter a username and password before they can
view or edit the application in question.

■ Auto Populate - [EE] An SQL operation associated with a field that will retrieve
information and populate other fields in the given Row based on the value of that
field.

■ Auto-run - Batch Process - [PRO] An operation that is scheduled to run
automatically when an application is started.

■ Auto-run - Email - [PRO] An SQL operation that returns a list of rows which contain
email fields (usage ID -40). These email fields can be used in conjunction with the
Auto Run capabilities of WOW.

■ Blob Download - [PRO] An operation associated with a field (similar to Association
1-1) where Blob data (.jpg, image, etc.) is downloaded when the field is clicked on.

■ Execution Group - Operation that actually runs one or more other operations. After
defining the Execution Group operation, define other (normal) operations and set
their "parent operation" to the Execution Group operation. The other operations will
not appear in the TOC, but instead will be run when the Execution Group operation
is run. For example, if the other operations were called OP1 and OP2, when the
Execution Group operation is run, the results would contain results from OP1, followed
by results from OP2.

■ File Upload - [PRO] Operation associated with a field (similar to Association 1-1)
where a file is uploaded when a field is clicked.

■ HTML Code - Inserts HTML directly into your applications. This can be used to
customize your program with a startup screen, logo, or any other custom HTML code
you would like to add to your application.

■ HTML Code Association - As the name suggests, this is the association version
of the HTML Code operation. It provides the same functionality as the HTML Code
operation but is set on a field as an association. However, since it is an association,
row parameters (??field) can be placed anywhere in the HTML code.

■ HTML Reference - Specifies a Web Site address that WOW will open in a new
window.

■ HTML Reference Association - [PRO] Similar to all associations in that upon
execution, values from a source row may be used to retrieve dynamic content for an
http URL. For example, if a selected record contained address information, you could
create an HTML Reference Association that linked to Google™ Maps or some other
Internet mapping service. Dynamic content in the URL can be replaced in a similar
fashion to replacing values for SQL fields.

■ JSP Reference - [PRO] Inserts a JSP file directly into your applications. Use the JSP
File field, to specify the path to the JSP file.

■ Possible Values - Uses data from a database to create the possible values of the
field.

 ©Copyright PlanetJ Corporation 2011

■ Possible Values Search - Possible Values operation opens in a popup window
so that the Possible Value for a particular field can be picked from a result set
dynamically. Allows the user to specify search parameters and see other values in the
row while selecting field value

■ Possible Values Selector - Behaves in a similar fashion to the Possible Values
operation; however, this operation causes a round-trip to the server when the value
of the field changes.

■ Referrer Authorization - Used to allow only users coming from a certain web page
into your application.

■ Tabbed - A secondary operation displayed in a tabbed layout.
■ User Authentication List - An application can be secured by creating a User

Authentication List operation which is defined by a comma separated list of user
names and passwords. When the user logs on to an application with list based
security they are prompted for their user name and password. This is a useful option
when the WOW developer wants to quickly implement application level security for a
small group of users without having set up table or user profile based security.

■ User Authorization List - An operation that holds a static list of user names (in the
operation's code field) defined when this operation is created and is used to restrict
access to certain fields or operations. This authorization operation is useful when a
small number of users will have restricted access to certain fields and/or operations.

■ User Authorization Operation - An operation that dynamically returns a single
column of user names. This type of operation is a more dynamic solution than the
user authorization list. An SQL statement is defined that returns a result containing a
single column of user names.

■ User Group Authorization List - [EE] An operation that holds a static list of user
group names (in the operation's code field) defined when this operation is created
and is used to restrict access to certain fields or operations. Users can be designated
to belong one or more groups (e.g. LDAP groups). This authorization operation is
useful when a small number of users will have restricted access to certain fields and/
or operations. The application signon would also need to be configured to collect
a user's list of groups they belong to. Currently, only LDAP groups are supported
(see Configure Group Search Properties for more details). [Minimum Version: WOW
7.0]

■ User Group Authorization Operation - [EE] An operation that dynamically returns
a single column of user group names. This type of operation is a more dynamic
solution than the user group authorization list. An SQL statement is defined that
returns a result containing a single column of user group names. The application
signon would also need to be configured to collect a user's list of groups they
belong to. Currently, only LDAP groups are supported (see Configure Group Search
Properties for more details). [Minimum Version: WOW 7.0]

■ View Selected Association - An operation associated with a field. This operation will
display the selected record (source row) in a Details view without hitting the database
again.

 ©Copyright PlanetJ Corporation 2011

http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#Configure_Group_Search_Propert

Controlling the Display Order of Operations

Display Groups determine how WOW separates different operations. All operations with the
same Display Group will be grouped together when the application is run. Any name that
would help with grouping the operations will work in this field. If the Display Group is not
specified, that operation will appear under the Default group.

The parameter that specifies which Display Group that an operation appears in is the
Display Group parameter. There are two elements involved in the ordering of operations.
One is the order that the Display Groups appear. The other is the order in which the
operations appear within the Display Group. Both of these order elements are determined
by the single property Display Order. Within a Display Group, the operation with the lowest
value appears first in the list. The next greater value in that Display Group appears second,
etc. The order of the Display Groups is determined by the operation in each group with the
lowest Display Order. The minimum value in each Display Group is then used to place the
Display Group in the proper order.

For example, if we have the following operations and their associated properties, the
operations will be displayed as shown:
Operation Display Group Display Order
Create User Users 0
Edit User Users 10
Delete User Users 20
Create Entry Entries 100
Edit Entry Entries 110
Delete Entry Entries 120

Here is the result:

Swapping the display order values of the Create User and Delete User operations, will in

 ©Copyright PlanetJ Corporation 2011

turn swap the order of the operations within the User Display Group.
Operation Display Group Display Order
Create User Users 20
Edit User Users 10
Delete User Users 0
Create Entry Entries 100
Edit Entry Entries 110
Delete Entry Entries 120

Changing the display order of the Create Entry operation to a value of -100 will cause the
minimum value of the display order for the Entries display group to be less than the Users
display group, which will switch the order of the entire set. Despite the fact that the Edit
Entry operation and the Delete Entry operation both have a display order value that is
greater than all of the operations in the Users display group, the Entries display group is
displayed first
Operation Display Group Display Order
Create User Users 20
Edit User Users 10
Delete User Users 0
Create Entry Entries -100
Edit Entry Entries 110
Delete Entry Entries 120

Here is the result:

 ©Copyright PlanetJ Corporation 2011

Setting a Next Operation

Also known as work flow, WOW provides the ability to specify the next operation to be
executed after a user inserts, updates, or deletes a record. For instance, let’s say you have
a multi-stage registration process with each stage handled by a separate operation. Rather
than having the user select each stage individually from the menus, you could use the Next
Operation feature to automatically direct the user from one operation to the next.

To direct the user from the Stage 1 operation to the Stage 2 operation, you would need to
edit the Stage 1 operation, go to the Advanced section, and specify Stage 2 as the Next
Operation.

 ©Copyright PlanetJ Corporation 2011

Using a Please Wait Page

The amount of time it takes for a query to run depends on several factors, including the
complexity of the operation, the amount of data being searched over, and the speed of
the database connection. WOW allows you to display a "please wait" page for long running
queries. This please wait page appears immediately when a long-running query begins, and
is replaced with the query results upon the completion of the operation. Showing a please
wait page gives the user a more responsive experience than an application which appears to
do nothing for several seconds after a search is initiated.

To indicate that a query should display a please wait page to the user while it runs, you
must add the PleaseWait property group to the operation’s Properties:
PleaseWait {}

You do not need to include any properties in the property group; the group itself is
sufficient. The operation will now display the default please wait page to the user when it
runs.

Creating a Custom Please Wait Page

[PRO] If you do not want to use the WOW default please wait page, you can create your
own custom page to use instead. You can use any valid JSP as your please wait page. Any
HTML page will work as long as you change the file extension from .html to .jsp or you can
create a custom JSP using scriptlets and tag libraries. Keep in mind that WOW will not add
any sort of header or menus to your please wait page.
Inside of the PleaseWait property group, you use the JSP property to indicate which JSP
should be used as the please wait page:
PleaseWait { jsp: /mydir/mysubdir/mypleasewait.jsp; }

The operation will now use your please wait JSP instead of the default WOW page.

NOTE: The JSP file path used in the example above is relative to the WOW context folder
in Apache Tomcat. For instance, the file path above would be pointing to the following
address: …\Tomcat 5.5\webapps\wow65\mydir\mysubdir\mypleasewait.jsp

If multiple operations are using the same please wait JSP, you can specify the PleaseWait
property group containing your JSP in the application properties. Then all operations with
please wait pages will use the JSP in the application properties by default. (You must still
specify the PleaseWait property group in the operation to indicate that the operation should
show a please wait page, but you do not have to include your custom JSP in the operation
properties.)

 ©Copyright PlanetJ Corporation 2011

Selecting Records
Basic SQL Queries Using the SELECT Statement

The SELECT statement is a vital SQL command which is used frequently within WOW. This
section contains numerous examples in which some basic SQL knowledge will be helpful in
understanding. In all of the examples we will only need to complete the fields located in the
BASIC section of an operation. For each example there will be a screen shot followed by an
explanation of its contents.

To get to this screen, click on the Insert Operation button while viewing a list of operations.
The focus will be on the SQL query. SQL is not case sensitive, but entering SQL in all capital
letters will simplify the coding. Take for example this simple SQL query:
SELECT * FROM SAMPLE.EMPLOYEES

This query will select all of the records in the EMPLOYEES table, which is found in the
SAMPLE schema. The * symbol is used to collect all of the columns from the table. Most
SQL queries will have the keyword FROM within the query statement. This tells the program
which table(s) to select the information from. After you have entered all of the relevant data
click the Insert Operation button. This will insert the SQL operation into the application.

NOTE: The SELECT statement syntax is slightly different for Microsoft's SQL Server and
Access.
Microsoft SQL Server 2000 & Up

With SQL Server, the database schema notation is slightly different than, let's say, the AS/
400. In the examples below, two different and valid notations are given. In the first, note
the use of two periods between the database and table. In the second statement, notice the
inclusion of OWNER between the database and table.
SELECT * FROM DATABASE..TABLE (recommended)

or
SELECT * FROM DATABASE.OWNER.TABLE

Microsoft Access

SELECT * FROM TABLE

 ©Copyright PlanetJ Corporation 2011

Other Queries Using the SELECT Statement

SQL allows you to select specific columns from a table.

In this example, the SQL statement is:
SELECT FIRSTNAME, LASTNAME, HIREDATE FROM PJDATA.EMPLOYEE

This SQL query is selecting individual columns in the EMPLOYEE table. LASTNAME,
FIRSTNAME and HIREDATE are the names of specific columns. Selecting specific columns
will prevent you from displaying data that isn’t relevant to the search. Each column name
is separated by a comma. Again notice the FROM keyword pointing to the EMPLOYEE table.
After you have entered all of the relevant data, click the Insert Operation button. This will
insert the SQL Operation into the application.

The next example shows how to use the WHERE clause in an SQL statement to restrict the
rows returned by the query. Only those rows meeting the criteria in the WHERE clause will
be returned by the query.

The SQL statement used in this example is:
SELECT * FROM PJDATA.EMPLOYEE WHERE SALARY >= ?

This SQL query is different from the previous two because of the WHERE keyword that is
added. The WHERE clause is used to specify a search condition that will identify the row or
rows you want to manipulate. Notice that the WHERE clause contains a question mark. If we

 ©Copyright PlanetJ Corporation 2011

knew what value we wanted entered ahead of time, we could hard code the value into the
SQL Operation. A question mark allows the user to provide any value at runtime.

After you enter the value for SALARY, the query will display a table with all of the
employees with salaries greater than or equal to the value specified. The WHERE clause is
usually used with comparison operators. You can include multiple parameters in the WHERE
clause to specify more complex queries.

 ©Copyright PlanetJ Corporation 2011

Setting Key Position Field to Select Unique Records

In WOW many of the SQL statements are generated for the user. For example when
selecting records from a field and then clicking insert, the SQL is dynamically generated. If
there are many records, you may come across a problem where WOW will Select, Delete,
Insert, Update more than the one record desired because it does not have the appropriate
key position(s) set.

The key position is the same as a primary key in a database system and similar to a unique
key. It gives the database a reference to differentiate rows (records). Normally, if a primary
key is set in database system WOW will pick it up. If not, or if the key position(s) was not
set in the database, then it is necessary to set the Key Position in the Field Descriptor to
differentiate the rows.

If there is no specific field such as ID or employee number use multiple fields that
guarantee unique records. In this case set key position for different fields to 1,2,3…etc.

NOTE: These key fields do not need to be shown. They just need to be set. You can set
them to not display by changing the display property group of the operation.

 ©Copyright PlanetJ Corporation 2011

SQL Tips

Case Sensitivity

To make SQL searches not case sensitive use the UPPER keyword. For example:
SELECT * FROM yourtable WHERE UPPER(lname) LIKE UPPER(TRIM(CAST(? as CHAR(20)

)))

The field name was a CHAR(20) and we wanted to search for it using any number of known
letters in the word. We need to use a TRIM command, because, for example, if you search
for all last names starting with an 'S', it will take the 'S' and append zeros to fill up the
CHAR(20) space unless it matches it exactly. So, the TRIM takes out these extra spaces and
fillers.

Optional Values

To allow optional entry of certain values in a SQL search statement, use the SQL VALUE
clause. For example:
SELECT * FROM yourtable WHERE firstname = VALUE(CAST(? as CHAR(20)),

firstname) AND lastname = VALUE(CAST(? as CHAR(20)), lastname)

In this case, you are searching your table by last name and first name using the VALUE
function which basically is a function that returns the first value that is not null. For
example, we could input a first name and last name, one separate from the other or none
at all and it will search according to that. If you enter none of these, it will then show the
entire file. If you only enter the first name, it will search for all of the records that have
the same first name and will not use the last name field as a parameter for searching. This
allows you to have one search operation that can have many different fields to search by
without depending on each other on having a value.

NOTE: You may also use the LIKE function with the VALUE function to make the search
even more powerful; however, with LIKE, you again may need to use the TRIM command.

 ©Copyright PlanetJ Corporation 2011

Inserting Records
Basic SQL Queries Using the INSERT Command

[EE] This section will cover basic INSERT commands using SQL statements and will
include examples to help with the explanation. Once again, a basic knowledge of SQL is
recommended.

The insert command is followed by the INTO keyword which specifies the table to insert
data into. The sample below is what will be displayed if the SQL operation is executed.

After the values have been entered, click the Insert button. This will create a new record for
the table. Only the required fields (indicated by the red asterisk) need to be given a value in

 ©Copyright PlanetJ Corporation 2011

order for the row to be inserted.

 ©Copyright PlanetJ Corporation 2011

Inserting Records without SQL Commands

WOW makes it possible to insert rows without an INSERT SQL operation. If you specify
on an SQL operation to "Allow Inserts", WOW provides the insert functionality for you. For
example, a SELECT statement will result in a screen with a table of results that has an
Insert button below it. To insert a new row, simply press the Insert button. After the Insert
button has been clicked the follow screen appears:

After filling in all of the information that is pertinent, click the Insert button. This will give
you a message letting you know that your row has been inserted into the database.

 ©Copyright PlanetJ Corporation 2011

Inserting Records Using Parsing

[EE] When inserting a record using parsing, you must supply a value for each column to add
data to. A value in the VALUES clause for each column named in the INSERT command’s
column list must be provided. If a column has a default value, the keyword DEFAULT may
be used as a value on the VALUES clause. The image below shows a sample SQL INSERT
command using parsing.

Each column is separated by commas. Next is the values keyword that is followed by the
three values to be added to the table. The values in the second set of parenthesis should
correspond with the column names in the first set of parenthesis. Run Time prompting (‘?’)
can be used in place of any hard coded value. Running this INSERT command will only
display the values you choose in the INSERT command.

Only the three fields and their values that were specified in the INSERT command will be
added. Using parsing allows users to only enter the information they want added to the
record. In the event that there is a required field in the table into which you are inserting
records, you will have to be sure to give the required field a value or else an error will
occur.

 ©Copyright PlanetJ Corporation 2011

Joined Inserts

[EE] A joined insert is an insert statement which inserts data into multiple database tables.
For example, the following operation inserts data into two tables, the CUSTOMER and
CUSTLOC tables.

NOTE: Field names beginning with "C" are from the CUSTOMER table, and fields beginning
with "L" are from the CUSTLOC table

Joined inserts can also occur when a join is used to select multiple rows from the database
(with a query like SELECT * FROM JETEMP.CUSTOMER JOIN JETEMP.CUSTLOC ON CLOCID =
LOCID), and the user clicks the corresponding Insert button.

During a joined insert, the user is shown fields from all tables on the same insert screen.
There is no indication given to the user of which fields belong to which tables.

 ©Copyright PlanetJ Corporation 2011

Additional properties can be used to control join behavior. See the Join property group:

Restrictions

Each field name in a joined insert must apply to a single table. When two or more tables
have columns with the same name, those columns cannot be used in a joined insert into
those tables.

Transactions

[EE] The SQL standard does not allow for inserting into multiple tables with a single
statement, therefore internally WOW splits the insert statement into multiple separate
SQL statements and sends them all to the database. It is possible for the one statement
to succeed but for the other statements to fail (a dropped network connection or an
authorization error are two things that could cause one statement to work and then others
to fail). When the first statement fails, WOW abandons the insert and reports the error
as usual. However, if a subsequent statement fails after the first statement succeeds, the
database could be left in a corrupted state. For this reason you may wish to configure your
application not to use joined inserts, or to use database transactions.

A transaction is a way of bundling multiple SQL statements into a single unit of work – that
unit of work will either succeed or fail as a whole. If it fails then none of the statements
in the transaction will have affected the database. Some databases do not support
transactions, and other databases require special configuration before transactions can be
used. Check with your database documentation to find out how to configure transactions on
your database.

By default, WOW will not use transactions for joined inserts. If you want WOW to issue
your joined insert as a single transaction (which is recommended if your database supports
transactions), you must use the Join property group to specify this:
Join { transactions: true; }

This property group should be placed in the properties field of the operation which is
inserting the joined rows into the database (or the operation which selected the joined rows,
depending on which operation is being run). Alternatively you can place this property group
in the properties field of the application, where it will apply to all of the operations in that
application.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Updating Records
Basic SQL Queries Using the UPDATE Command

[EE] The UPDATE statement is used to change data in a table. Using the UPDATE statement
allows you to change the value of one or more columns in each row of the table. The screen
shot below shows an example of an UPDATE statement. Previous knowledge of SQL and
familiarity with the UPDATE statement is recommended.

The SQL statement in the Operation Code:
UPDATE PJDATA.EMPLOYEE SET BONUS = BONUS + 200

This is a simple SQL query that is updating (giving a raise to) all employees. The basic
syntax of an UPDATE statement is listed above. The UPDATE keyword is directly followed
by the name of the table to be updated. In this case it’s the EMPLOYEE table in the PJDATA
schema. The SET clause names the columns you want to be updated and provides a value
for you to update. The bonus for all employees is 200 dollars. The new value for bonus will
then be the old value plus 200 more.

Using a WHERE clause with the UPDATE statement

The WHERE clause and UPDATE statement are commonly used together. By using the
WHERE clause in conjunction with the UPDATE statement, a user can specify only certain
values that meet a certain criteria. The screen shot below will show how to use the WHERE
clause in an UPDATE query.

 ©Copyright PlanetJ Corporation 2011

The SQL statement in the SQL field:
UPDATE.PJDATA.EMPLOYEE SET SALARY = SALARY + 1000 WHERE WORKDEPT=?

The above statement is a simple SQL UPDATE query. The UPDATE command points to
the location of the table. In this example the table is EMPLOYEE in the PJDATA schema.
The SET command sets the salary to equal to the current salary and adds 1000. By using
the WHERE statement the user can enter a specific work department; only employees in
that department will receive raises. The question mark allows the user to enter any work
department when this command is run.

 ©Copyright PlanetJ Corporation 2011

Joined Updates

[EE] A joined update occurs when a user edits and updates values in a joined row. A joined
row is a row containing data from multiple tables. For example, a query like SELECT * FROM
JETEMP.CUSTOMER JOIN JETEMP.CUSTLOC ON CLOCID = LOCID would result in joined rows.

During a joined update the user is shown fields from all tables on the same screen. There is
no indication given to the user of which fields belong to which tables.

Additional properties can be used to control join behavior. See the Join property group:
Restrictions

Each field name in a joined update must apply to a single table. When two or more tables
have columns with the same name, those columns cannot be used in a joined update to
those tables. In addition, the row being used for the joined update must contain all the key
fields for all of the tables being jointly updated.

Transactions

The SQL standard does not allow for updating multiple tables with a single statement,
therefore internally WOW splits the update statement into multiple separate SQL statements
and sends them all to the database. It is possible for one statement to succeed but for
the other statements to fail (a dropped network connection or an authorization error are
two things that could cause one statement to work and then others to fail). When the first
statement fails, WOW abandons the update and reports the error as usual. However, if a
subsequent statement fails after the first statement succeeds, the database could be left
in a corrupted state. For this reason you may wish to configure your application not to use
joined updates, or to use database transactions.

 ©Copyright PlanetJ Corporation 2011

A transaction is a way of bundling multiple SQL statements into a single unit of work – that
unit of work will either succeed or fail as a whole. If it fails then none of the statements
in the transaction will have affected the database. Some databases do not support
transactions, and other databases require special configuration before transactions can be
used. Check with your database documentation to find out how to configure transactions on
your database.

By default WOW will not use transactions for joined updates. If you want WOW to issue
your joined update as a single transaction (which is recommended if your database supports
transactions), you must use the Join property group to specify this:
Join { transactions: true; }

This property group should be placed in the properties field of the operation which selected
the joined rows. Alternatively you can place this property group in the properties field of the
application, where it will apply to all of the operations in that application.

 ©Copyright PlanetJ Corporation 2011

Deleting Records
Basic SQL Queries Using the DELETE Command

[EE] The DELETE statement is used to remove entire rows from a table. The DELETE
statement cannot remove specific columns from a row. If the WHERE statement in a DELETE
query is omitted, SQL will remove all the data in the table.

A simple SQL DELETE statement goes as follows:
DELETE FROM PJDATA.EMPLOYEE WHERE EDLEVEL < ?

Notice the keyword FROM following the DELETE command which specifies which table to
delete data from. In this example, the SQL statement is deleting data from the EMPLOYEE
table in the PJDATA schema. The WHERE clause is extremely important when using the
DELETE command. All rows whose EDLEVEL is less than the value entered at runtime will be
deleted from the table.

 ©Copyright PlanetJ Corporation 2011

Deleting Rows Without SQL Commands

[EE] It is possible to delete rows without an SQL Command. This is done by selecting
specific rows from a table using their check boxes, and then clicking the Delete button
under the data. The selected rows will be removed from the table. If you have set the
SelectionType to none in the properties section this option is not available. Any of the rows
could be deleted using this deletion method.

The checkboxes on the far left allows users to select individual rows. You would use the
checkbox to select a row and then delete it.

 ©Copyright PlanetJ Corporation 2011

Joined Deletes

[EE] A joined delete occurs when a user deletes a joined row. A joined row is a row
containing data from multiple tables. For example, a query like SELECT * FROM
JETEMP.CUSTOMER JOIN JETEMP.CUSTLOC ON CLOCID = LOCID would result in joined rows.

Additional properties can be used to control join behavior. See the Join property group:

Restrictions

A joined row must contain all key fields for all of its tables – otherwise that row cannot be
used for a joined delete.

Transactions

The SQL standard does not allow for deleting records from multiple tables with a single
statement, therefore internally WOW splits the delete statement into multiple separate
SQL statements and sends them all to the database. It is possible for the one statement
to succeed but for the other statements to fail (a dropped network connection or an
authorization error are two things that could cause one statement to work and then others
to fail). When the first statement fails, WOW abandons the update and reports the error
as usual. However, if a subsequent statement fails after the first statement succeeds, the
database could be left in a corrupted state. For this reason you may wish to configure your
application not to use joined deletes, or to use database transactions.

A transaction is a way of bundling multiple SQL statements into a single unit of work – that
unit of work will either succeed or fail as a whole. If it fails then none of the statements
in the transaction will have affected the database. Some databases do not support
transactions, and other databases require special configuration before transactions can be
used. Check with your database documentation to find out how to configure transactions on
your database.

By default WOW will not use transactions for joined deletes. If you want WOW to issue
your joined delete as a single transaction (which is recommended if your database supports
transactions), you must use the Join property group to specify this:
Join { transactions: true; }

This property group should be placed in the properties field of the operation which selected
the joined rows. Alternatively you can place this property group in the properties field of the
application, where it will apply to all of the operations in that application.

 ©Copyright PlanetJ Corporation 2011

Field Descriptors
Field Descriptors are an important and powerful part of WOW. A Field Descriptor describes
a field within a table or database. Field Descriptors contain information such as the external
name of a field, whether or not the field is required, and the type of data the field contains,
such as numeric, time, etc. Utilizing Field Descriptors allows WOW to perform validation,
display formatting, and other tasks for your application without any coding on your part.
Field Descriptors should be created for all tables that WOW uses frequently.

We encourage creating Field Descriptors for all production level tables/environments.

 ©Copyright PlanetJ Corporation 2011

Field Descriptor Manager

To edit or create Field Descriptors you first must be in the Field Descriptor Manager. The
easiest way to get to the Field Descriptor Manager is to click on the small "FD" icon above
any results table.

This will bring up the Field Descriptor Manager in a new window:

You can also start up Field Descriptor Manager from WOW directly without first running
your application. Click on the Setup Connections link on the left side of the builder. You can
then select a connection whose field descriptors you want to manage and click the Edit FDs
field. Whenever you are using Field Descriptor Manager, you are managing the field
descriptors for a single connection. To manage field descriptors for another connection,
you must choose a different connection (or a table retrieved using that connection) and
open up Field Descriptor Manager from that connection or table.

The "Enter library" and "Enter table" fields at the top of the main Field Descriptor Manager
screen allow you to type in the name of the library and table whose Field Descriptors you
want to work with or create. Alternatively, you can click one of the "Select from list" radio

 ©Copyright PlanetJ Corporation 2011

buttons and choose the library or table from the list of libraries or tables available (double
click an entry in the list to select it) Once you have picked a library or table to work with,
the following options are available:

Library Functions

■ Enter Library - This shows what library you are currently in. If you would like to
change your current library click the radio button below and select the library in the
list given. If a table’s FDs are shared, specify * for the library name.

■ View FDs - Displays all of the Field Descriptors within the entire library. This may
take some time to complete, depending on the number of tables in the library. It is
usually better to display the Field Descriptors for a single table at a time.

■ Create FDs - Creates Field Descriptors for the entire library. Creating Field
Descriptors for the entire library is not recommended – it is usually better to create
them separately for each table.

Table Functions

■ Enter Table - This shows you which table you are currently in. If you would like to
switch your current table, click the radio button below and select the table you would
like in the list given.

■ View FDs - Displays all of the Field Descriptors already created for the table. In
most cases the FDs are already displayed below, if for some reason the FDs are not
displayed click this button and they will be displayed.

■ Share FDs - Allows you to share the Field Descriptors for this table with other tables
which have the same name, but are in different libraries. By default, a table’s Field
Descriptors are only for that table, and not for any other tables, even if those tables
have the same name. This function will not share Field Descriptors for multiple
connections. Each connection holds a unique set of Field Descriptors. If a table’s FDs
are shared, you must specify * for the library name.

■ Create FDs - Creates field descriptors for the currently selected table.
■ Reset FD Cache - For advanced users only. This button is used for troubleshooting

purposes. Internally, WOW caches Field Descriptors as they are read – this button
clears the cached FDs. This function can be helpful when FD changes recently made
do not appear to be affecting the operations using this table and connection.

 ©Copyright PlanetJ Corporation 2011

Editing Rows Within the Field Descriptor Manager

To change the settings on an individual row that is shown under the Field Descriptor section,
click the edit icon next to the Field Descriptor you wish to edit. This will bring up a screen
containing the Field Descriptor settings that can be edited. The screen shot below covers the
first two sections Basic Settings and Display Settings.

Basic Settings

■ Field Name - The database name of the column which this Field Descriptor describes.
In the above example, the Field Descriptor for the SERVICE_COMPANY column is
being edited.

■ External Name - The external name given to the field. External names are used to
make the field name more user-friendly.

■ Required - Indicates whether or not the described field is required. Required fields
are denoted by a red asterisk, and are validated when a row is updated or inserted. If
a required field is left blank on an insert or update, a validation error is displayed to
the user.

■ Required on Search - Indicates that if the field is used by a search parameter (ex.
WHERE FLD1 = ?), a value must be specified before the search operation is performed.

■ Default Value - The default value for the field. A default value can be any value you
want initially displayed. If the field is auto-incremented, the default value can be used
to set the starting value.

■ Auto Update Value - [EE] This value will set for the field when an update is
performed. The same rules apply to this setting as the Default Value setting. A

 ©Copyright PlanetJ Corporation 2011

common use for this option would be for a field that is designated to contain the "last
changed" date, time, or timestamp value. In this particular example, you would
set this option’s value to *current. Any time this row is successfully updated, the
last changed value would be updated as well. [WOW 7.1] WOW only includes fields
whos values have changed when generating an SQL UPDATE. In some cases such
as workflow applications, you may want a field to be updated into the database
regardless if it changed. For example: SELECT ‘APPROVED” as status, B, C FROM
LIB.REQUESTS … When updating, you may want STATUS included when the row is
updated. Supports a special value of *VALUE to indicate that this field should be
included when an edit/update is performed.

Display Settings

■ Field Set - Field Sets are used to group different fields together. By entering a
specific name in the Field Set section you can group different fields by the name given
(Basic Settings and Display Settings are examples of Field Sets).

■ Display Order - Used to display fields in order specified by the number given (in
ascending order). You can use any numbers when ordering fields.

■ Display Rule - Contains the rule to use when displaying this field. You can set the
display ruleto one of the following options:

○ Always - This field should be displayed whenever its row is displayed. This is the
default setting.

○ Hide on insert - The field should not be displayed when its row is being inserted.
○ Hide on update - This field should not be displayed when its row is being

inserted.
○ Hide on update and insert - [EE] This field should not be displayed when its row

is being updated or inserted.
○ Never - This field should never be displayed.

There are other display rule options that are for WOW customer programmer only –
you should only set the display rule to one of the values listed above.

■ Display Component - Indicates which display component should be used to display
the field. Most of the time, WOW will pick which graphical component to use when
displaying a field based on the type of data contained in the field. If you want to
override the system default (for example, by using a text area instead of a text field
to display character data), you can choose which display component to use.

○ (Default) - Component is determined by the DataEngine.
○ *Associated Operation - Rather than generating a normal association hyperlink,

this runs the associated operation and returns the results within the actual
field. Note, this option can only be selected if an Associated Operation has been
specified in the Advanced Settings section.

○ EditableSelect - Two components are generated for this option: a top drop down
menu with selectable possible values and a text field that allows entry for a new
value.

○ EditableSelect - Text Area - Same as an EditableSelect except insures that the
bottom component will be a text area instead of a text field.

○ List - Component is a selectable possible values list displaying all options in
which multiple values can be selected.

○ RadioButtonPVSelect - Displays a possible value selection using radio buttons
instead of selection list. (For future support)

○ TextArea - Uses a text area instead of a text field for the display component.
■ Help Text - Text that will be displayed when the user positions their pointer over the

component

 ©Copyright PlanetJ Corporation 2011

■ Style Class - The fully qualified name of a CSS class that will perform formatting
on the look of the component generated for the field. For example, if you need to
right justify a field, you can create a unique CSS style class and specify the class
name here. You would create a fieldstyles.css file and define in it: .mystyle {
text-align: right; } and set the Style Class to mystyle. If the field is rendered
as an image (<img ...), the class would need to be named as the following in
CSS: ".mystyle img".

■ Display Width - Sets the width of the display in pixels (changes with HTML settings).
■ Display Height - Sets the height of the display in pixels (changes with HTML

settings).

Possible Value Settings

■ Possible Value Key - The key that determines which Possible Values to use for this

field.
■ Possible Value Operation - This is a drop-down menu listing all of the previously

created possible value operations.
■ Possible Value Class - The specific Java class that is used to hold Possible Values

internally on the system. You may also specify a Possible Value class name.
○ *DISTINCT* - Returns all distinct values from the database for that particular

field. NOTE: Using this for a list of records will degrade performance. For
multiple records use *DISTINCT-CACHE*

○ *DISTINCT-CACHE* - Returns all distinct values from the cached contents of
that particular field. NOTE: For performance reasons, CACHE should be
used whenever a list of records will be shown.

Advanced Settings

 ©Copyright PlanetJ Corporation 2011

■ Field Class - The specific Java class that will be used internally to store the data

contained in the field. These classes usually have specialized formatting or display
information built in that can be used for fields containing certain types of data.
For example, when the planetj.database.field.PasswordField class is selected for a
field descriptor, fields using that field descriptor will hide their content with asterisk
characters. Users with WOW Professional Edition may create their own Field
Subclasses. [PRO]

○ Field Class Parameters - If you manually enter the Field Class, you can
optionally enter special parameters. These parameters indicate features
or attributes of the Field Class. The following are Field Class parameters
that you can enter:minLength=xx where xx is the minimum length of the
field (ex. minLength=7).To enter a Field Class parameter, you must enter
the full package and className followed by a comma (,) followed by a
paramater=value where parameter is the Field Class parameter. If there is
more than one parameter, they should be separated by a comma (,).Example:
planetj.database.field.PasswordField,minLength=7,digitRequired=t

rueSome Field Classes have special Field Class parameters that are specified
only to that field. For instance on a DateField, you can specify the date format.
In the above example, you will notice the digitRequired=true Field Class
parameter is used; that is a special parameter for the PasswordField. Here are
the preset Field Classes:

■ Address1 - Designates the field as the first line of a street address (for
use elsewhere in the application). No specified validation is performed.

■ Address2 - Designates the field as the second line of a street address (for
use elsewhere in the application). No specified validation is performed.

■ Area Code - The validation of an area code field ensures that the length
of the area code is the correct length and only contains numeric digits. If
the values contains (,), or -, they are also accounted for.

■ Auto Update Timestamp - This sets a new timestamp value when a
record is being inserted or updated. Alternatively, the field's Default Value
and Auto Update Value can be set to *CURRENT. This will achieve the same

 ©Copyright PlanetJ Corporation 2011

effect on TimeStamp fields.
■ City - Designates the field as a city (for use elsewhere in the application).

No specific validation is performed.
■ Credit Card Expiration Month - If no other Possible Value Key or

Operation is specified, this Field Class uses the Possible Value Key
MONTHS_OF_THE_YEAR to return a list of all months.

■ Credit Card Expiration Year - If no other Possible Value Key or
Operation is specified, this Field Class uses the Possible Value Key
CC_EXPIRE_YEAR.

■ Credit Card Number - The validation of a credit card number ensures
that the length of the number is the correct length (16 or less digits).

■ Credit Card Type - If no other Possible Value Key or Operation is
specified, this Field Class uses the Possible Value Key CC_TYPE to return a
list of standard credit card types (Visa, MasterCard, etc.).

a. All records in the last 6 months
SELECT…WHERE…DATE ((CENTURY * 100 + YEAR) || '-' || MONTH

|| '-' DAY) > CURRENT DATE - 6 months

b. All records in the last 3 months
SELECT…WHERE…DATE ((CENTURY * 100 + YEAR) || '-' || MONTH

|| '-' DAY) > CURRENT DATE - 3 months

■ Date - In the database, a date field might not necessarily be a Date
object. It could be a String or a number. To allow for proper reading and
setting to the database, a Field's Field Class could be set to DateField
followed by a comma and any user-defined pattern for date formatting.
The pattern should be the format the value should be written as when
inserted or updated to the database.

Example:
In the database, we have a field that is a CHAR with a length of 8. It
takes the format 2 month, 2 day, and 4 year. When we read the value
from the database, it needs to be modified from a string of characters
into a date before it is displayed. If we set the field class to DateField,
then a Java Date object will be generated, which gives the field's value
more meaning and flexibility. In this case, we would set the field class
to this value:planetj.database.field.DateField,MMddyyyyThis is the
fully qualified class name of the field descriptor followed by a comma and
then the pattern that the date needs to be in order to be written to the
database. This lets WOW know that the field contains a date value and the
format in which that value is stored. There are many formats that you can
use and are used in different databases; here are the available formats
(case sensitive):

■ yyMMdd ■ MMddyy ■ yyyyMMdd
■ MMddyyyy ■ cyyMMdd ■ cyyMM
■ cyyDDD

■

All of these formats are used as shown above and allow the application to
handle any date input. Additional examples:

■ Field Class Setting ■ Example Date Format

 ©Copyright PlanetJ Corporation 2011

■ planetj.database.field.DateField,
yyyyMMdd

■ 2005/03/22

■ planetj.database.field.DateField,
MMddyyyy

■ 01/13/2005

■ planetj.database.field.DateField,
ddMMyyyy

■ 23/01/2005

■

If you wish to have the value of a DateField set to the current date, set
the Default Value to *CURRENT.

Special Case: Multi-field Dates
A commonly encountered date scenario for customers is to have date
information stored in multiple database fields. For example, individual
fields that store century (19, 20), year (95, 06), month (1-12), and day
(1-31). Currently, this cannot be handled through the Field Descriptors, so
we'll use the operation's SQL to remedy the situation.

Often, during SQL selection, it is desirable to allow the end user to select
the multi-field date as a single date field. Doing so can also enable the
use of SQL data arithmetic which is very powerful. In the example below,
we will use a multi-field date in the WHERE clause of an SQL operation.
To enable this date selection, we need to build a String in a format such
as "2004-4-3" and use the DATE function on it. First, add the following
SQL segments to your test operation:SELECT…WHERE…DATE ((CENTURY
* 100 + YEAR) || '-' || MONTH || '-' DAY) BETWEEN ?555 AND ?

555Since you are concatenating fields to produce a date, WOW doesn’t
know what type of prompt you need. Therefore, you must create a derived
Field Descriptor and set its data type to DATE. Substitute the ID of the
derived FD in place of 555 in the SQL above. WOW will then know to
prompt with a date picker. Doing this will also allow some very nice "fixed
date" queries such as:

■ Email - In the database an email column's value might be
support@planetjavainc.com. By setting the Field Class to Email,
the proper display value will be generated automatically. Also,
the proper validation will automatically be performed to check for
correct email address syntax. In particular, it ensures the value
contains an '@' symbol as well as a '.' in the domain. It will also
create the HTML mailto link automatically for that display value:support@planetjavainc.

comThus, a user could click on the link, then type and send an email
to the address. This would especially be beneficial if you wanted to display
a list of emails. Rather than manually coding each email link, by setting
the Field class to Email, they would automatically be generated.

■ Fax Number - The validation of a fax number field ensures that the
length of the fax number is the correct length and only contains digits. If
the value contains (,), or - they are also accounted for.

■ First Name - The validation of a first name field ensures that the field is
not blank, has at least 2 characters, and is not completely numeric.

■ Gender M/F - If no other Possible Value Key or Operation is specified,
this Field Class uses the Possible Value Key *GENDER* to return a list of
genders (Male, Female).

 ©Copyright PlanetJ Corporation 2011

■ HTML Code - Allows the field value to contain HTML tags and be rendered
as HTML code by the browser. Otherwise, those tags would be mostly
likely stripped out, leaving only the text.

■ Image URL Reference - This class takes the field’s value and uses it as
the source for an HTML image tag. For instance, if the field contained the
value "images/planetj.gif", it would be sent to the browser as the source
attribute of an image tag: . This
allows the user to visually display the contents of a field containing image
references.

■ Last Name - The validation of a first name field ensures that the field is
not blank, has at least 2 characters, and is not completely numeric.

■ Password - This field class ensures that when a password field is
displayed, it will be replaced by asterisks. This can be very useful for
sensitive information such as passwords.

Field Class Parameters
If you manually enter the Field Class, you can optionally enter special
parameters. These parameters indicate features or attributes of the
Field Class. The following are Field Class parameters that you can
enter for a PasswordField only:digitRequired=true - This forces
the user to enter at least one digit/number in the passwordExample:
planetj.database.field.PasswordField,minLength=7,digitRequired

=true

In the example above, a valid password would be: abcd123. Invalid
passwords would be: abc123 (too short), abcdefgh (no digits).

■ Phone Number - The validation of a phone number field ensures that the
length of the phone number is the correct length and only contains digits.
If the value contains (,), or - they are also accounted for.

■ Social Security Number - The validation of a social security field
ensures that the length of the social security number is correct and its
value contains only digits. If the value contains any -, they are also
accounted for.

■ State - If no other Possible Value Key or Operation is specified, this Field
Class uses the Possible Value Key *US_STATES* to return a list of all US
states.

■ T/F Boolean - This field can be used when you want the value in the
database to be of type CHAR and length 1. Since the field is a boolean
field, it will be displayed in the form of a checkbox. Thus, the user cannot
enter the wrong value. When setting the value programmatically, a
boolean true or false can be used, which will in turn set the value to T or
F.

■ Timestamp - Stores date and time values in ISO format (yyyy-MM-dd-
HH.mm.ss.nnnnnnnnn) and displays to the user in a more readable format
(MM/dd/yyyy HH:mm:ss). Use this field in conjunction with *CURRENT as
the field's Default or Auto Update Value to automatically insert the current
date and time.

■ Upper Case - This field ensures that its value is always upper case both
when displaying and inserting or updating to the database.

■ URL Reference - For fields containing URL references (e.g. http://
www.google.com), this field class wraps the field's value in HTML anchor
tags so that it is rendered to the user as a hyperlink rather than plain text.

 ©Copyright PlanetJ Corporation 2011

■ User ID - Designates the field as a user ID, which is needed when the
field is used for authentication or authorization. No specific validation is
performed.

■ YBlank Boolean - Same as T/F Boolean, except uses 'Y' and ' ' instead
of 'T' and 'F'.

■ YN Boolean - Same as T/F Boolean, except uses 'Y' and 'N' instead of 'T'
and 'F'.

■ Zip Code - The validation of a zip code ensures the zip code is correct
length and contains only digits. If the value contains a -, it is also
accounted for.

■ Zip Code Suffix - The validation of a zip code suffix field ensures the
zip code suffix is the correct length and contains only digits. If the value
contains a -, it is also accounted for.

■ Field Descriptor Type - This is where you can select which field descriptor type, if
any, you would like to be using.

○ Default - This descriptor type is the default setting and applies to most FD
definitions

○ Derived - The FD represents a derived field used in SQL statements (e.g.
View as d_viewfld where the text View is shown for each row and the field
is represented with the name d_viewfld). A derived field does not exist in the
table and its value is used for display only.

○ Table Descriptor - This field descriptor represents a table (instead of a field) and
has the same name as the table, except it is prefixed with a tilde (~). There
can only be one table descriptor for each table. The table descriptor is created
automatically by WOW when "Create FDs" is selected.

■ Formatter Class - Specify the Java class that will be used to format the data for
a report. This setting only affects how the data is displayed. For example, setting a
CHAR 10 to a "Phone Number" would result in 1234567890 to be shown as (123)456-
7890. Some examples of formatter classes include:

○ ISO Date - This formatter class will change the format of the
field to ISO YYYY-MM-DD format. To set up this formatter, enter
planetj.formatters.DateFormatterISOYearMonthDay in the Field Descriptors
Formatter Class field.

○ Day/Month/Year Date - This formatter class will change the format of the field to
DD/MM/YYYY format, the format generally used throughout Europe. To set up
this formatter, enter planetj.formatters.DateFormatterDayMonthYear in the FD
formatter class field.

○ Day.Month.Year Date - This formatter class will change the format of
the field to DD.MM.YYYY format, the format generally used throughout
Europe with the EURO separator as well. To set up this formatter, enter
planetj.formatters.DateFormatterEUDayMonthYear in the FD formatter class
field.

○ Locale-specific Date - This formatter class will change the format of the
specified field to the locale-based standard date format, utilizing the locale
set on Apache Tomcat's Java settings. To set up this formatter, enter
planetj.formatters.LocaleSpecificDateFormatter in the FD formatter class field.

○ German Number - This formatter class will change the format of number fields
to use a period for the separator and a comma as the decimal, as is done in
Germany and some other places in Europe. To set up this formatter, enter
planetj.formatters.GermanNumberFormatter in the FD formatter class field.

○ Locale-specific Number - This formatter class will change the format of the
specified field to the locale-based standard number format, utilizing the
locale set on Apache Tomcat's Java settings. To set up this formatter, enter

 ©Copyright PlanetJ Corporation 2011

planetj.formatters.LocaleSpecificNumberFormatter in the FD formatter class
field.

■ Concurrency - [EE] Regulates the concurrent updating or deleting of a row or field by
users. A concurrent update occurs when user A views a field, user B then updates that
field, and then user A tries to update that same field, overwriting user B’s changes.
A concurrent delete is when user A views a field, user B updates that field, then user
A deletes the row, erasing user B’s changes. You can adjust this setting to allow or
disallow concurrent updates and deletes on the described field.

○ NO_CONCURRENT_ALTERATIONS_ALLOWED - If user A reads a field with
this concurrencu value from the database, and then user B makes changes to
the field, user A cannot update the field or delete the row containing the field
without first rereading it.

○ CONCURRENT_DELETES_ALLOWED - If user A reads a field with this
concurrency value from the database, and then user B makes changes to
the field, user A is allowed to delete the row containing the field without first
rereading it.

○ CONCURRENT_UPDATES_ALLOWED - If user A reads a field with this
concurrency value from the database, and then user B makes changes to the
field, user A is allowed to update the field without first rereading it.

○ CONCURRENT_UPDATES_AND_DELETES_ALLOWED - If user A reads a field with
this concurrency value from the database, and then user B makes changes to
the field, user A is allowed to update the field or delete the row containing the
field without first rereading it. This is the default value.

■ Getter Method - [EE] This attribute is only used for Derived Fields. The DataEngine
parses the getter method String to get the method to call and parameters to use.
Then Java reflection is used to invoke the proper method to get the Derived Field’s
value.

■ Setter Method - [EE] This attribute is only used for Derived Fields. The DataEngine
parses the setter method String to get the method to call and parameters to use.
Then java reflection is used to invoke the proper method to set the correct Field(s)
value.

■ Association Operation - The pull down for this attribute will show any associated
operations (1-1, 1-many, etc.) available. Setting this attribute to an operation causes
that associated operation to execute when the field is clicked on.

■ Notify Status Change -Tells whether or not changes the user makes to this field
value will triggers a “status change” or not. A status change notifies the server that
the field has been given a new value, and allows the server to re-render either the
entire page, or other fields on the page.

○ No – Do not notify the server when the field’s value changes. This is the default
value

○ Yes – Notify the server whenever the value of the field changes. The round-
trip back to the server will re-render the entire page, and any possible value
operations shown on the page will be executed again. Therefore, if another
field’s possible values operation depends on the value of this field, the possible
value operation will be executed again, but this time it will contain the new
value.

○ Ajax – Notify the server whenever the value of the field changes. Instead of re-
rendering the entire page, only the fields in the current row will be re-rendered.
Any new values or possible values for those fields will be sent back to the
browser from the server, and those fields on the screen will be updated without
reloading the whole page.

■ Remarks - User documentation for field only.
■ XML Tag - This defines the XML tag to be used for this field when the XML icon is

 ©Copyright PlanetJ Corporation 2011

clicked.

Authorization Settings

■ Read Authorization Operation - [PRO] Used to limit the users who can read the
data for this field.

■ Edit Authorization Operation - [PRO] Used to limit the users who can edit the data
for this field.

Additional Settings

■ Sortable - Whether or not results can be sorted by the values in this field. In the
results table, sortable fields have small up and down arrows next to their names; the
user can click on these buttons to sort by that field.

■ Auto Increment - For fields that need auto-incremented unique values.
○ None - No auto-increment.
○ Database Driven - The value for each row will increment automatically by the

database system being used. This should be selected for database identity

 ©Copyright PlanetJ Corporation 2011

fields.
○ WOW Driven - The value for each row will be incremented automatically as

it is inserted into the database. By selecting this option, you allow WOW to
increment each row on its own, without any intervention.

The Default value under the Basic Settings can be used to set the starting value for
this option.

■ Read Only - Whether or not the field is read-only. Read-only fields cannot be
updated.

■ AutoTrim On Read - If spaces on the end of field values should be automatically
trimmed and discarded as the values are read from the database.

■ AutoTrim on Write - If spaces on the end of field values should be automatically
trimmed and discarded as the values are written to the database.

■ Currency - Whether or not this field represents a currency or monetary value. It's the
same as setting the Formatter Class to "Currency". Checking this box causes the value
to be right justified.

■ Id - A unique number associated with this field descriptor. This is the ID that can be
used when doing field descriptor prompting.

■ Usage Id - An integer that is associated with this database column. This is useful
when two columns in different tables have different names, but represent the same
logical type of data. They can then be referred to by usage ID instead of by name.

Database Settings

■ System Alias - The name of the alias being used for the current connection.
■ Column Size - The amount of information the described field can contain. This setting

specifies the maximum number of characters or digits that can be stored in this field's
database column.

■ Library Name - The name of the library that the described field is located in. If the
Field Descriptor is shared among tables in mulitple libraries, this field will contain an
asterisk.

■ Scale - For a numeric type field, this is the number of digits to the right of the
decimal point.

■ Table Name - The name of the table that the described field is located in.
■ Nullable - Whether or not the field can contain null values.
■ SQL Type - This is the corresponding SQL data type for the field.
■ SQL Type Name - This is the corresponding SQL data type for the field.
■ Key Position - Defaults to 0 for non-key fields. This field represents the position of

this field in the table's key. For instance, if this table (Table Name) has only one key,
and this FD is the key field, then the key position should be 1. If this table's key is
made up of two columns, you need to set the FDs appropriately. If a Field Descriptor
is not a key, this value should be 0. Keys are used to identify a unique record (row)
within the table. Only one row is allowed to exist with each key (or set of key values).

 ©Copyright PlanetJ Corporation 2011

Field Descriptor Views

When you are viewing field descriptors in Field Descriptor Manager, by default the ID, Field
Name, External Name, Required, and Field Class columns are the only columns displayed
(these columns are explained in greater detail at the beginning of this chapter). Although
you can always choose to view the details of a Field Descriptor to see all of its settings,
there are times when you will want to view different columns of multiple field descriptors.
There are eight different views or filters that can be used within Field Descriptor Manager
to control the columns that are displayed in the table of field descriptors. These views are
found on the drop down menus of the Field Descriptor Manager and are described below in
the next five sections.

Table FD's

■ Auto Trim - Displays the Auto Trim On Write and Auto Trim On Read columns for all
the field descriptors in the current table and library.

■ Default Value - Displays the Default Value field of all the field descriptors in the
current table and library.

■ Display Properties - Displays the Field Set, Display Order, Display Rule, and Display
Components fields of all the field descriptors in the specified table and library.

Shared FD's

■ Table FD's - Shows all field descriptors for the current table that are shared. Shared
field descriptors will not be shown for a table and library by simply clicking the View
FD’s button. This is because shared field descriptors do not correspond to any specific
library. You must use the Table FD’s option to view the field descriptors for a table
that have been shared.

■ All FD's - Displays the shared field descriptors for all tables for the current system
alias.

Usage IDs

■ Table FDs - Shows the Usage ID field for all the field descriptors for the current table
and library.

■ Table FDs w/UsageId - Shows the Usage ID field for all the field descriptors for the
current table and library which have a Usage ID.

■ All FDs w/UsageId - Shows the Usage ID field for all the field descriptors for the
current system alias which have a Usage ID.

Search By

■ Multiple Fields - This search option provides a means to display a subset of field
descriptors based on one or more of the following search fields: Library Name, Table
Name, Field Name, External Name, Id, Usage ID, Field Descriptor Type.

Quick Edit

The quick edit feature lets you display a subset of field descriptors and edit specific fields
from the table view. Each of the views below shows a different set of fields:

■ Default Value and Required - Shows an editable table that includes the Default

 ©Copyright PlanetJ Corporation 2011

Value and Required fields.
■ Display Properties - Shows the following field descriptor fields: Field Set, Display

Order, Display Rule, Display Component, Id, Field Name, and External Name.
■ Key Position - Shows the following field descriptor fields: Key Position, Id, Field

Name, External Name.

 ©Copyright PlanetJ Corporation 2011

Prompting Using Field Descriptors

When an SQL operation that has a question mark in its code (e.g. SELECT * FROM
PLANETJ.CUSTOMER WHERE BALANCE > ?) is run, the Field Descriptor for the BALANCE field
is used to generate an input where the user can provide a value for the query at runtime. If
the Field Descriptor indicated that the maximum value for this field was 9,999,999 then the
HTML input would not allow the user to enter a larger value. If the Field Descriptor indicated
that the field should be displayed with an HTML text area component (instead of a text
field), then the generated input would be a text area.

You can override this behavior and use a different Field Descriptor for generating the user
prompt. To do so, append the ID of the Field Descriptor you want to use to the question
mark. For example, the query SELECT * FROM PLANETJ.CUSTOMER WHERE BALANCE > ?
307 would use Field Descriptor 307 for generating the prompt input shown to the user. This
enables you to present a prompt for the same field in different way in different queries.

 ©Copyright PlanetJ Corporation 2011

WOW Features
Derived Fields

Perhaps one of the most commonly used features in WOW, derived fields provide the ability
to create a "virtual" field. This field is defined by a field descriptor, just a like a normal
field, yet it does not actually exist in a physical file. It is simply a container field that can be
used to return any value needed. It can be handled and manipulated just a like an actual
database field.
A derived field is represented in SQL by a column name alias. For instance, the following
SQL statement contains a derived field with the column name alias D_DETAILS:
SELECT 'Details' AS D_DETAILS, FIRSTNME, LASTNAME FROM PJDATA.EMPLOYEE

This statement returns three columns, in the following order: D_DETAILS, First Name, and
Last Name.

Notice the first part of the column name alias ('Details') represents the initial value that
is displayed in the derived field. A string, which requires single quotes, was used in this
example but you could also instead use numbers, functions, other field names, etc. The
second part (AS D_DETAILS) assigns an alias (column name) to the value defined in the
first half.

Another method of creating a derived field in WOW is to use the !!<field name> notation
within the SQL statement similar to this:
SELECT !!D_DETAILS, FIRSTNME, LASTNAME FROM PJDATA.EMPLOYEE

This statement returns three columns, in the following order: D_DETAILS, First Name, and
Last Name.

Notice the fields in the Details column are all blank, unlike the first example which required
you to set a value in the field or pull a value from another field in the database.

This method allows us to include a derived field in a result table without requiring you to
pull a value from the database or set value on the field. This method is especially useful

 ©Copyright PlanetJ Corporation 2011

when creating derived fields for Tabbed Operations. Please note that this method requires
you to create a derived field descriptor before the operation will run properly.

Creating a Derived Field Descriptor

Once you have the derived field defined in your SQL, you can format and manipulate
it by creating its derived field descriptor. This will allow you to assign it default values,
associations, field classes, and so on. A derived field descriptor differs from a normal
field descriptor in really only one way: its Field Descriptor Type is set to ‘Derived’. This
allows WOW to handle it appropriately. Also, a field descriptor for a derived field will not
automatically generate by clicking the ‘Create FDs’ button in the Field Descriptor Manager.
Thus, you must manually create derived field descriptors.

The easiest way to do this is to simply copy another field that is of the desired data type.
For instance, if your derived field was a calculation that returned a decimal number, you
would copy an existing field descriptor for a field of type DECIMAL or NUMERIC. To continue
our example from the previous section, here are the steps to creating a derived field
descriptor for D_DETAILS:

1. Create a Field Descriptor
Since the only value that D_DETAILS will hold is the string 'Details', a good field
descriptor to copy (rather than creating one from scratch) would be a simple CHAR
field. Now, navigate to the Database Settings section of this new field descriptor and
change the values to reflect those shown in the figure below. In particular, the Library
and Table Names are the same as specified in the SQL statement listed above. Also,
SQL Type and SQL Type Name specify the CHAR field type and the Column Size is 7
since we only need 7 characters (ie. Details).

2. Set the Field Descriptor's Settings

Besides the Database Settings given in Step 1, there are two other Field Descriptor
settings that are key to success. The first is the Field Name field under the Basic
Settings section. In this example, the Field name is D_DETAILS.

 ©Copyright PlanetJ Corporation 2011

The second is the Field Descriptor Type under the Advanced Settings section. This
must be set to ‘Derived’.

3. Update and Run Application
Click Update and run the application. If everything has been done correctly, the
column label will say 'Details' rather than 'D_DETAILS'. This means the derived field
has successfully been linked with the derived field descriptor and is picking up the
External Name.

 ©Copyright PlanetJ Corporation 2011

Parameters

There are many cases where the statement you want to run cannot be completely specified
at design time. This usually happens when the statement contains certain values that either
needs to be directly inputted by the user at runtime or depend on the context in which the
statement is being run (the context includes things such as the user's sign on information
and previous statements that the user has run). WOW handles these cases by using default
parameters. A parameter is represented in code by one or more question marks, possibly
followed by additional parameter control characters. For example, the following SQL
statement contains 3 different parameters:
SELECT * FROM PLANETJ.CUSTOMER WHERE (BALANCE > ? AND ID = ???CUSNUM) OR ??1

< 0

The ?, ???CUSNUM, and ??1 all serve as placeholders for values that are not known at design
time, but will be plugged in to the statement at runtime before it is executed. This section
will describe the various parameter types that are available in WOW and how to use them.

SQL Prompt Parameters

A single question mark in an SQL statement represents a SQL prompt parameter. When
a statement containing one or more SQL prompt parameters is executed, the user is
prompted to enter values for these parameters. For example, when the statement:
SELECT NAME, BALANCE FROM PLANETJ.CUSTOMER WHERE BALANCE < ? AND NAME LIKE ?

is run, the user is shown the following screen.

After supplying values, the user can click the search button to run the statement with the
values that were entered. Unlike most types of parameters which can be used in any type of
operation, SQL prompt parameters can only be used in SQL operations.

Field Descriptor Prompt Parameters

A field descriptor prompt parameter is similar to an SQL prompt parameter in that it is used
to display an entry field for the user to supply a value for the parameter. The difference
between the two is how WOW generates the entry field. For SQL prompt parameters, WOW
determines which field descriptor to use for the entry field based on the SQL statement. For
a field descriptor prompt parameter, WOW will use a specific field descriptor you specify to
generate the entry field.

Field descriptor prompt parameters are denoted by a single question mark followed by the
ID of the field descriptor to use. For example, the SQL statement:
SELECT * FROM PLANETJ.CUSTOMER WHERE BALANCE > ?49

 ©Copyright PlanetJ Corporation 2011

will use the field descriptor with an ID of 49 to generate the prompt shown to the user. Field
descriptor prompt parameters can only be used in SQL statements.

Row Parameters

A row parameter takes information from a row of data and plugs it into a statement. A row
parameter is indicated by two question marks followed by a database column name. For
example, if a database record describing a single employee has been selected from the
EMPLOYEES table, and now information about that employee's department needs to be
selected from the DEPARTMENT table, the SQL statement might look something like this:
SELECT * FROM PJDATA.DEPARTMENT WHERE ID = ??DEPT_ID

This statement assumes that ID is the key in the DEPARTMENT table, and that the "current
row" (from the EMPLOYEE table) contains a column called DEPT_ID which is a foreign key
to the DEPARTMENT table. When this statement is run, the value of the DEPT_ID field of
the "current" row is used as the parameter value.

NOTE: This parameter is automatically filled in by WOW; the user is not shown any type of
prompt.
User Parameters

A user parameter is similar to a row parameter, except instead of taking information from
the "current" row, the information is taken from a row of data associated with the current
application user. A user parameter is identified by three question marks in a row followed by
a database column name. So, the following statement:
SELECT * FROM PLANETJ.CUSTOMER WHERE ID = ???CLIENT_ID

will select rows where the ID field is equal to the CLIENT_ID field associated with the
current user.

There is a special user parameter called USERID which is always associated with the id that
was used to sign onto the application. This user parameter can be used with any type of
application sign-on (except for an unsecured sign-on, which does not require the user to
enter a user id or password). The SQL statement:
SELECT * FROM PLANETJ.USER_INFO WHERE ID = ???USERID

would select every row from the USER_INFO table where the ID column has a value equal
to the user ID of the current user. User ID’s are always converted to uppercase, so in the
above example all values in the ID column should be uppercase as well.

Usage ID Parameters

In order to use a row or user parameter, you have to know the database column name
of the field whose value you are interested in. In some cases this is not possible - usually
this happens when multiple tables contain the same logical piece of information in different
fields. In this situation, you can identify the field to use by its usage ID instead of its column
name. A usage ID is an integer you can associate with one or more field descriptors. A
usage ID parameter will look for a field descriptor with the specified usage ID in the row
(either the user row or the current row) and use the value in the field described by that field
descriptor.

 ©Copyright PlanetJ Corporation 2011

A user usage ID parameter is denoted by three question marks followed by a caret and the
usage ID. The statement:
SELECT * FROM PLANETJ.CUSTOMER WHERE ID = ???^18

would take the value associated with usage ID 18 in the user row as the parameter value.
A row usage ID parameter is denoted by two question marks followed by a caret and the
usage ID.
SELECT * FROM PLANETJ.CUSTOMER WHERE ID = ??^46

would take the value associated with usage ID 46 in the current row as the parameter
value.

Table Parameters

A table parameter is used when you want to allow the user to specify the table or tables
to run an SQL statement against. For example, you might have multiple tables containing
customer orders - every table would have the same structure but be specific to a single
customer. You could then build a query which could apply to any of the tables - the user will
pick the exact table to run the query against at runtime:
SELECT * FROM ?~PLANETJ.CUSTOMER WHERE ORDER_NUMBER = ?

A table parameter begins with a question mark followed a tilde (~) and includes the name
of a table; in the above statement ?~PLANETJ.CUSTOMER is the table parameter. At runtime,
the statement will be executed against whatever table the user specifies, which may or
may not be the PLANETJ.CUSTOMER table. However, the PLANETJ.CUSTOMER table will be
used to identify the field descriptors which will be used to display the parameter prompts
to the user. The prompt for the table parameter will be based off of the table descriptor for
PLANETJ.CUSTOMER - this table descriptor can be used to specify a display name and a list
of possible table values for the user to choose from. The prompt for the second parameter
will be based off of the ORDER_NUMBER field descriptor in the PLANETJ.CUSTOMER table -
even if this is not the table the user specifies for the actual statement execution.

Parameter Parameters

A Parameter parameter is a parameter which gets its value from another parameter in the
same statement. Parameter parameters are used when multiple parameters in a statement
must all have the same value. For example if you wanted to look up customer balances that
are within $200 of a certain value, your query might look like this:
SELECT * FROM PLANETJ.CUSTOMER WHERE BALANCE +200 > ? AND BALANCE – 200 < ??1

The first question mark is a normal SQL prompt parameter - the user will be prompted
for this value. The second pair of question marks is immediately followed by a number,
indicating that it is a Parameter parameter. The user will not be prompted to supply a value
for this parameter. Instead it will have the exact same value as the first parameter in the
statement.

In general, a Parameter parameter is denoted by two question marks followed by a number.
The number indicates which parameter in the statement should be used to supply the value
(in the above example, the number 1 indicates that the first parameter should be used to
supply the value).

Context Parameter Parameters

A Context Parameter parameter is a parameter that is similar to a Parameter parameter,

 ©Copyright PlanetJ Corporation 2011

but rather than getting its value from another parameter in the same statement, it gets
it’s value from a parameter (search) in an associated statement. When Context Parameter
parameters are used, parameters in an association need to have the same value as the
parameters in the original SQL. For example, an original query might show a summary
of a customer’s balance between a certain date range. The query would also contain an
association (using a derived field descriptor) that gets transaction details for that customer.
The association (2nd SQL listed below) would thus need to use the same search date range:
SELECT CUSTOMER_NAME, SUM(AMOUNT), !!DETAILS FROM

PLANETJ.CUSTOMER_TRANSACTIONS WHERE TRANSACTION_DATE BETWEEN ? AND ?

SELECT TRANSACTION_ID, AMOUNT FROM PLANETJ.CUSTOMER_TRANSACTIONS WHERE

CUSTOMER_NAME = ??CUSTOMER_NAME AND TRANSACTION_DATE BETWEEN ??&1 AND ??&2

In the association, the first parameter is a Row parameter used to ensure the proper
customer information is retrieved. The last two parameters are the context parameter
parameters used to get the same date range to search on as the original query.

In general, a Context Parameter parameter is denoted by two question marks followed by
an ampersand ('&') and a number. The number indicates which parameter in the original
statement should be used to supply the value.

 Using Context Parameter parameters in Possible Values

Another use for Context Parameter parameters is to reference search parameter values
within possible value operations assigned to search parameters. An example scenario:

You have an operation with 2 search parameters that shows a report with a list of
employees. The 1st parameter is Company divisions and the 2nd is company departments.
When a user selects 1 or more divisions, you want the possible values for departments to
only reflect the chosen divisions. In a 2nd example below, employees can be searched on
by work department and job. As you change your work department selection (1 or more),
the list of Jobs to choose from changes:

The main operation with the 2 search fields looks like this:

SELECT * FROM PJDATA.EMPLOYEE WHERE WORKDEPT in ? and JOB in ?

Next, possible values operation are created for the fields WORKDEPT and JOB:

WORKDEPT:

JOB:

Notice the use of the context parameter ??&1 in the 2nd possible values

operation (JOB). This tells WOW to substitute in the values of the 1st search

parameter (work departments) into the possible values statement above (JOB).

 ©Copyright PlanetJ Corporation 2011

For field WORKDEPT, the Field Descriptor has the 1st possible values operation

assigned:

And Notify Status changed to Yes or Ajax:

The notify status change setting (Ajax or Yes) tells WOW to rerun the possible values
operations assigned to the 2 search parameters whenever the 1st search parameter has it’s
selection changed.

For field JOB, the Field Descriptor has the 2nd possible values operation assigned:

Runtime Parameters

Runtime parameters are parameters which are specified when the user first enters an
application, and can then apply to all operations executed by that user. For example, let’s
say you have sales offices in three different locations: Atlanta, Boston, and Cleveland. You
want to develop a WOW application containing various operations which let people from
each branch run different queries against sales made by their branch. You could include the
branch name in each query using regular SQL parameters like this:
SELECT * FROM PJDATA.SALES WHERE BRANCH = ? AND AMOUNT > ?

SELECT * FROM PJDATA.SALES WHERE BRANCH = ? AND DATE = ?

SELECT * FROM PJDATA.SALES WHERE BRANCH = ? AND ACCOUNT = ?

The only problem with this scenario is it forces users to select their branch for every query
that is run. If you rework these queries to use runtime parameters instead, then the branch
can be specified once when the application starts up and used for all subsequent queries
without further user input.

Two question marks followed by a colon “:” and an identifying name is the sequence used
to indicate a runtime parameter. Using runtime parameters for the branches in the above
queries gives:
SELECT * FROM PJDATA.SALES WHERE BRANCH = ??:BCH AND AMOUNT > ?

 ©Copyright PlanetJ Corporation 2011

SELECT * FROM PJDATA.SALES WHERE BRANCH = ??:BCH AND DATE = ?

SELECT * FROM PJDATA.SALES WHERE BRANCH = ??:BCH AND ACCOUNT = ?

To specify a value for the BCH runtime parameter, the application should be started with a
URL like this:
http://www.planetjavainc.com/wow/runApp?id=40&BCH=Atlanta

This starts up application 40 and indicates that "Atlanta" is the value for all runtime
parameters named "BCH". The '?' denotes the start of parameters and '&' is used to
separate parameters. Users from different branches can use links specifying their branch
when starting the application:
http://www.planetjavainc.com/wow/runApp?id=40&BCH=Boston

http://www.planetjavainc.com/wow/runApp?id=40&BCH=Cleveland

When they run the operations, they will not have to select which branch they are querying.

Request Parameters

Request parameters are parameters which get their values from the HttpRequest. For
example, lets say you had some HTML (in a JSP or in Operation instructions) similar to this:
<input type="text" name="myInput" />

<input type="hidden" name="myHiddenInput" value="1998" />In your operation
you could then use a Request parameter to get the values from the HTML. Two
question marks followed by a percent sign “%” and an identifying name is the sequence
used to indicate a Request parameter. So, from the above example, if you used the
parameter ??%myHiddenInput in your SQL, the value returned for the parameter will be
1998. If, in turn, you used ??%myInput as the parameter in your SQL, the value returned
for the parameter would be whatever value the user entered in the input.

Session Parameters

Session parameters are a more advanced parameter type and are only really used when
doing custom programming. Two question marks followed by a semi-colon “;” and a key
name is the sequence used to indicate a Session parameter. An example of a session
parameter looks like this:
??;myParm

Using the above parameter as an example, WOW would look in the session for the
key "myParm" and use the value stored in the session for that particular key as the value
for the parameter.

Special User Library Parameter

WOW supports the ability to store metadata in any number of user libraries or

 ©Copyright PlanetJ Corporation 2011

schemas. The default is "PJUSERxx" where xx is the release id. You can specify the
following to use the current user library.
SELECT * from PLANETJ_USR.SQLOPS

"PLANETJ_USR" will be replaced by the actual default user library at
runtime. "PLANETJ_SYS" can be used for the current WOW System library.

NOTE: Changing WOW System data can result in a corrupt environment which is not
covered by WOW Support agreements. It is recommended that this only be used for read
only purposes.

RowCollection Parameters [Minimum Version: WOW 7.0]

RowCollection parameters are parameters which get their values from the current
RowCollection (1 or more Rows displayed by an operation). RowCollection parameters can
be used to show attributes of the current rowcollection in your operation results, such as in
the operation title or instructions. A RowCollection parameter typically is not for use in your
SQL Statement, because the RowCollection is created after the SQL is run. Below are the
supported RowCollection parameters:

● ??!WOW_RC_SIZE - Substitutes in the number of rows currently displayed on the
page.

● ??!WOW_SQL - Substitutes in the SQL used to generate the results currently
displayed. Useful when debugging a problem with the operation.

For example, if an operation displays 10 rows of data and the title = "Data for ??!
WOW_RC_SIZE Employees", the title would look like:

Data for 10 Employees

Defaulting Parameter Values

Normally when user needs to fill in a parameter’s value, that parameter will default to a
blank value. For example, if your query is:
SELECT * FROM PJDATA.CUSTOMER WHERE BALANCE > ?

The prompt shown to the user would look something like this:

However, if you want your parameter to have a default value of 1000, you can specify this
is your SQL statement. Using the code:
SELECT * FROM PJDATA.CUSTOMER WHERE BALANCE > ?{1000}

 ©Copyright PlanetJ Corporation 2011

tells WOW that it should use a default value of 1000 for the parameter. Running an
operation with the above code results in this prompt (before the user enters any data in):

The user can type in any value he or she wants; 1000 is just a default value. If your field
has possible values and you want to use a default value, remember that you need to use
the value you want as the default, not the display value.

In general, any parameter that is displayed to the user can be given a default value by
appending the default value, enclosed in curly braces, onto the end of the parameter
(there should not be any spaces between the rest of the parameter and the opening curly
brace). Here are several more examples of SQL statements which assign default values to
parameters:
CALL PLANETJ.MY_SPROC (?45, ?92{Red}, ?14{Orange})

DELETE FROM PLANETJ.EMPLOYEE WHERE LASTNAME = ?{Stewart} AND FIRSTNME = ?

SELECT * FROM ?~PLANETJ.MYTABLE{PLANETJ.THISTABLE}

SELECT * FROM PLANETJ.EMPLOYEE WHERE HIREDATE BETWEEN ?{*current - 365 days}

and ?{*current}NOTE: '*current' is a special value used by WOW to specify the current
date. Manipulation can be done using 'days' as in the example above.

Operation Property Groups

The Properties field allows you to configure your operations in various ways. The screen
shot below shows where the Properties field is located in the "Creating Operations" screen:

 ©Copyright PlanetJ Corporation 2011

Within the properties field are different property groups. These groups are used to change
the look and feel of the tables and data selected by the SQL statement. For instance, a
few of the different property groups available are DisplayColumns, DetailDisplay, and
TableDisplay. The properties of each group will be listed between curly brackets {}.
For each property, the name of the property is followed by a colon and then the value
(or comma separated list of values), and finally by a semicolon. Below are samples of
properties groups correctly formatted:
DisplayColumns{ results:*; details:*; }

DetailDisplay{colCnt:; copyURI:; editURI:; insertURI:; maxInputWidth:;

maxInputWidthSum:; printURI:;viewURI:;}

TableDisplay{ selectionType:none; refresh:true; chart:true; excel:false;

msWord:true; pdf:true; xml:true; editFD:false; print:true; sorting:true;

drawGrid:true; rowCopy:false; updateable:true; deleteAll:true;

nextPrevious:true; }

OperationLabels{searchDisplay:3;}

Note that whitespaces (new lines, spaces, and tabs) are irrelevant to property group
formatting.

AutoRun {}

[EE] This property group allows you to set the run schedule for an "Auto-Run – Batch
Process" (an operation that is scheduled to run automatically when an application is

 ©Copyright PlanetJ Corporation 2011

started).
Property Value Description
startDate TODAY | MM/dd/yyyy The date the batch auto run

operation should start.
startTime IMMEDIATELY | hh:mm The time the batch auto run

operation should start.
frequency integer How often the batch auto

run operation should execute
in seconds (e.g. 900 = 15
minutes, 86400 = 1 day).

In the example below, the first run of the operation would occur on January 1, 2007 at 1
A.M., repeating every 7 days thereafter.
AutoRun {

startDate:1/1/2007

startTime:1:00 am;

frequency:604800;

}

Browser {}

This property group allows you to control the browser behavior when the operation is run.
One use for these properties would be when an operation displays a small pop-up window.
Property Value Description
url URL URL to load in the window.
target window name | _BLANK |

_SELF | _PARENT | _TOP
Target where to load the
window. The value "_SELF"
would ensure that the
operation runs in the same
window. _BLANK will open a
browser in a new window or
tab.

width integer Width for the browser window.
height integer Height for the browser

window.
toolbar TRUE | FALSE Show the toolbar.
location TRUE | FALSE Show the location bar.
menubar TRUE | FALSE Show the menu bar.
directories TRUE | FALSE Show the directories (links/

bookmarks).
scrollbars TRUE | FALSE Show the scroll bars.
resizable TRUE | FALSE Allow resizing of the browser

window.
copyhistory TRUE | FALSE Copy the browser history.

Chart {}

[Deprecated. Chart is no longer support. See WOW Fusion Charts] This property group
allows you to specify properties used to create and generate a chart using JFreeChart.

Config {}

 ©Copyright PlanetJ Corporation 2011

This property group allows you to specify a replacement library list for an operation.

CSV {}

Specifies formatting information for CSV documents (CSV documents include Microsoft Word
and Microsoft Excel formats). When a user chooses to view data in a CSV document, this
property group describes how that document should be formatted.
Property Value Description
columnHeadings INTERNAL | EXTERNAL Indicates whether the internal

database names or the
external "user-friendly" names
should be used for column
names in the CSV. The default
is INTERNAL.

Example: CSV {
columnHeadings:

external; }

This would cause the Excel
download to use external
labels for column headings.

outputRows ALL | SCREEN | SELECTED Indicates which rows should
be exported. Possible values
are ALL (all rows which satisfy
the query), SCREEN (only
rows on the current screen),
and SELECTED (only rows
which the user has selected).
By default, all rows are
exported.

displayColumns field,field,… Indicates which columns
should be exported. You may
type in a comma separated list
of column names that should
be exported. By default, all
columns returned by the
query are exported.

DetailDisplay {}

When a single entry (row) is displayed, this section contains information about how to
display the details of a row to the user (row details are what the user sees when they insert
a new row into the results, or when they select a row from the list of rows in the results,
and choose to view, edit, or copy that row). Most SQL operations do not need to include
these properties - they can simply use the WOW defaults. If you want to use a different
JSP to display detailed results, set the appropriate DetailDisplay property. The features
described below should only be used by advanced programmers who have experience with
Java and JSP programming.
Property Value Description
addButtonsURI file path JSP to use for buttons during

an insert.

 ©Copyright PlanetJ Corporation 2011

button locations top | bottom Designates where the buttons
are located on details screen.
The default is to show buttons
on both the top and bottom.

buttonJustify RIGHT | LEFT The buttons for the Detail
screen are displayed at the
top and bottom of the detail
and have value such as Insert,
Update, and Cancel. The
default value is right.

cancel TRUE | False Allow cancel on details screen.
cancelText text Text to be used on the Cancel

button. NOTE: Requires
WOW version 6.6.1 and
above.

colCnt integer Number of columns to display
when showing Row details
(default is 2).

colonAfterLabel TRUE | FALSE Append colon after labels on
the details screen. The default
is false.

copyTargetWindow window name | _BLANK |
_SELF | _PARENT | _TOP

Describes how to use a new
window for copying a row.
For more details, see the
editTargetWindow property.

copyURI file path The JSP to use when
displaying copied database
rows.

delete TRUE | FALSE Allow delete on details screen.
deleteText text Text to be used on the Delete

button.
detailsTargetWindow window name | _BLANK |

_SELF | _PARENT | _TOP
Describes how to use a new
window for viewing, editing,
copying, or inserting a new
row. For more information,
see the editTargetWindow
property.

editButtonURI JSP to use for buttons during
detail viewing.

 ©Copyright PlanetJ Corporation 2011

editTargetWindow window name | _BLANK |
_SELF | _PARENT | _TOP

Information about the window
to use when a row is edited.
If this property is omitted,
then the main browser
window is used to edit a row's
details. When this property is
specified, a new window will
be used to edit a row's details.
The value of this property can
either be a name for the new
window or a list of detailed
information about the new
window. For example, if the
property is specified like this:

editTargetWindow:

claimEdit;

Then when a row retrieved by
this operation is edited, the
editing will be done in a new
window entitled "claimEdit."
In general, the exact name
which the new window is given
does not matter; however, if
there is already a window with
that same name open, then
that window is used instead
of opening a new one. If the
special name "_blank" is used,
then a new window is always
opened:

editTargetWindow: _blank;

Alternatively instead of just
specifying a name, a whole list
of information about the new
window can be specified.

editTargetWindow:

name=_blank, height=600,

width=400, status=yes,

menubar=no,

scrollbars=no,

resizable=no;

The above example would
cause the new window for
editing to have a height of 600
pixels, a width of 400 pixels,
a status bar, no scrollbar
or menu bar, and not be
resizable. Only the name

 ©Copyright PlanetJ Corporation 2011

value is required - the rest are
optional and can be omitted if
you want to use the defaults.

editURI file path The JSP to use when editing
database rows.

grid TRUE | FALSE Use grid to display details.
insert TRUE | FALSE Allow insert on details screen.
insertAndCopy TRUE | FALSE Show the insert and copy

buttons.
insertAndNew TRUE | FALSE Show the insert and new

buttons.
insertTargetWindow window name | _BLANK |

_SELF | _PARENT | _TOP
Describes how to use a new
window for inserting a row.
For more information see the
editTargetWindow property.

insertText text Text to be used on the Insert
button.

insertURI file path The JSP to use when inserting
new database rows.

labelJustify TOP | LEFT Determines where the field's
label is to be located, top
(above) or to the left of the
field's display. The default is
to the left.

maxInputWidth integer The maximum input width
allowed for table display
(default is 36).

maxInputWidthSum integer The maximum sum of the
input widths in the table
display (default is 72).

nextAndPrevious TRUE | FALSE Show the next and previous
buttons.

nextText text Text to be used on the Next
button.

previousText text Text to be used on the
Previous button.

printURI file path The JSP to be used when
printing database rows.

tableWidth integer The width (in pixels) to be
used to display the details.

updateAndNextPrevious TRUE | FALSE Show the update and next
buttons.

updateText text Text to be used on the Update
button.

viewButtonsURI file path JSP to use for buttons during
detail viewing.

viewTargetWindow window name | _BLANK |
_SELF | _PARENT | _TOP

Describes how to use a new
window for viewing a row.
For more details, view the
editTargetWindow property.

viewURI file path The JSP to use when viewing
database rows.

 ©Copyright PlanetJ Corporation 2011

DisplayColumns {}

There are two properties in the DisplayColumns group, results and details. An asterisk can
be used as a value to display all data. In all the properties of this group, the values 'ALL'
and 'NONE' may be used.
Property Value Description
details ALL | NONE | * | field,field,… Used to specify what columns

you want displayed in a
details (single row) display.
You can view details of any
entry (row) by clicking on
the corresponding View icon
for the entry (row). Like the
results property, the details
property can also take specific
column names. For example:

DisplayColumns {

results: *; details:

empno,firstname,lastname,

sex; }

Now if you were to view an
entry instead of showing all
of the fields, it would only
display the employee number,
first name, last name, and
gender fields.

detailsExclude ALL | NONE | * | field,field,… Columns to exclude from the
details view.

editableResults ALL | NONE | * | field,field,… Used to specify what
columns should be editable
in the results view. Same
functionality as the
resultsEditable property. this
must be used in conjunction
with the updateable property
in the TableDisplay property
group:

TableDisplay {

updateable: true; }

 ©Copyright PlanetJ Corporation 2011

results ALL | NONE | * | field,field,… Used to designate which
columns (fields) are displayed
in the table when a set of
rows are displayed. To display
only specific fields, simply
delete the asterisk and replace
it with column names or
column number values you
want to display. Each column
name should be separated by
commas. For example:

DisplayColumns { results:

empno,firstname,lastname;

details: * }

The example would only
display the employee number,
first name, and last name
fields of the table. Syntax is
very important. The property
groups are case sensitive.
Each property group must
start with a capital letter on
each word with no spacing
between them. The field
names are no case sensitive
though. Another technique
to displaying certain fields in
the table is by using numeric
values instead of row names:

DisplayColumns { results:

3,1,2; details: *; }

In the example above, the row
names were simply replaced
with their corresponding
number. For example, the
above DisplayColumns setting
would display the third
column, then the first column,
and lastly the second column.

 ©Copyright PlanetJ Corporation 2011

resultsEditable ALL | NONE | * | field,field,… Used to specify what
columns should be editable
in the results view. Same
functionality as the
editableResults property. This
must be used in conjunction
with the updateable property
in the TableDisplay property
group:

TableDisplay {

updateable: true; }

resultsExclude ALL | NONE | * | field,field,… Columns to exclude from the
results.

Email {}

[EE] This property group allows you to specify properties that are used for e-mailing.
Property Value Description
from integer The From ID.
password text The SMTP/POP3 account

password.
pop3 integer The POP3 (incoming) mail

server IP address to use.
to integer The To ID(s).
cc integer The CC ID(s).
bcc integer The BCC ID(s).
replyTo text The address replies should be

sent to.
smtp integer The SMTP (outgoing) e-mail

server IP address to use.
subject text The e-mail subject.
user text The SMTP/POP3 account user

name.

FieldSet{}

For information on the FieldSet property group, see Laying out out details screen.

Join {} [PRO]

This is an optional property group that can be used when the operation query contains a
join. The properties are used to alter the default WOW behavior for handling a join.
Property Value Description

 ©Copyright PlanetJ Corporation 2011

https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US
https://docs.google.com/document/d/1OoAU1f3V5ZkJxs5JdDCS4Pf3guQZTJk18_ePO9arRxA/edit?hl=en_US

updateTables table, table, ... [EE] A list of one or more
tables that are updateable
when a WOW operation
contains a join. When an
update is performed, only
tables in this list are affected.

deleteTables table, table, ... [EE] A list of one or more
tables that are deleteable
when a WOW operation
contains a join. When a delete
is performed, only tables in
this list are affected.

insertTables table, table, ... [EE] a list of one or more
tables that are insertable
when a WOW operation
contains a join. When an
insert is performed, only
tables in this list are affected.

updateExcludeTables table, table, ... a list of one or more tables
that are not updateable when
a WOW operation contains
a join. When an update is
performed, only tables not in
this list are affected.

deleteExcludeTables table, table, ... [EE] a list of one or more
tables that are not deleteable
when a WOW operation
contains a join. When a delete
is performed, only tables not
in this list are affected.

insertExcludeTables table, table, ... [EE] a list of one or more
tables that are not insertable
when a WOW operation
contains a join. When an
insert is performed, only
tables not in this list are
affected.

transactions TRUE | FALSE [EE] Should transactions be
used when a joined row is
inserted/updated/deleted.
By default, WOW will not
use transactions for joined
inserts. If you want WOW
to issue your joined insert
as a single transaction
(which is recommended
if your database supports
transactions), you must use
the Join property group to
specify this.

 ©Copyright PlanetJ Corporation 2011

checkAssocs TRUE | FALSE Check whether or not
associated joins should be
checked for an operation. The
default is false.
NOTE: Using this property can
have performance implications
and is not advised unless
absolutely necessary.

LayoutDisplay {}

This property group allows you to override the layout display properties for this operation.
Property Value Description
toc width integer Width of left side navigation.
css file path CSS file.
company text text Company name.
heading text text Heading text on page.
sub heading text text Sub-heading text on page.
help uri file path Help URI link.
title text Title text.

OperationLabels {}

This property group allows you to specify how to organize the search parameters and
prompts.
Property Value Description
button text The search/update button

label text.
buttonImg file path New search button image file.
secondaryInstructions text Instructions for second set of

parameters.
dropDownItemDisplay NULL | text Controls the search drop down

text. Can change to anything
you want including "— Choose
—" or "NULL" if you don't want
any other drop-down values
but the actual values (default
is: — ALL —).

dropDownItemOrder TOP | BOTTOM Controls the search drop down
item order.

dropDownItemValue text Value for the drop-down
item specified by the
dropDownItemDisplay
property. The value that
is passed to WOW when
that option is selected. You
cannot specify a value for
dropDownItemValue unless
you also specify a value for
the dropDownItemDisplay
property.

 ©Copyright PlanetJ Corporation 2011

searchDisplay integer | field,field,… The order and/or rows to
display search parameters
in application. You specify
the number of prompts to be
shown on each row (using
the order specified in the SQL
statement), or you can put
all the search parameter field
names with "|" to specify a
new row and "," to delineate
each field name. If you specify
field names and order, you
must list all fields that you
would like to show up in
Application. Only used for
horizontal parameters.

Horizontal Parameters

An example of one way to use the OperationLabels property group is horizontal parameters.
It allows you to specify the order and number of search prompts on each row. To setup
horizontal parameters, you must first specify the parameters JSP with /dataengine/jsp/
horizontal_gen_params.jsp as shown below.

Here is a screenshot of horizontal parameters with 4 fields horizontally:
OperationLabels{searchDisplay:4;}.

Here is a screenshot of horizontal parameters with specified fields:
OperationLabels{searchDisplay: workdept,lastname,empno|phoneno;}.

 ©Copyright PlanetJ Corporation 2011

OperationSettings {}

This property group is used in creating a possible values selector.

OptionalSignon {}

This property group allows you to override some of the default features for an optional sign-
on.
Property Value Description
userLabel text The default is "User:".
passwordLabel text The default is "Password:".
title text The default is "Optional

Signon".

Paging {}

Paging refers to the process of returning a specific number of records per "page" screen.
This property group allows you to control if and how the paging is presented. It can either
be specified for an application or an individual authentication operation (if specified in both
places, the properties in the operation will take precedence).
Property Value Description
enabled TRUE | FALSE When set to false, paging links

are not displayed. This does
not necessarily mean that
there isn't a Next or Previous
page. This just means that if
there are links, they will not
be shown.

justify LEFT | RIGHT Sets on which side of the page
the paging links are aligned.

firstAndLast TRUE | FALSE Determines whether or not to
display the First and Last page
links.

pageNumbers TRUE | FALSE Page numbers allow the user
to jump to a specific page
in the results. This property
determines whether or not to
display these page number
links.

 ©Copyright PlanetJ Corporation 2011

pageCount integer Used in conjunction with
pageNumbers set to true.
Specifies the number of page
numbers to show at one
time. For example, lets say
there are 6 pages. If the page
count was set to 3 and you
were currently on page 4,
only pages 3, 4, and 5 would
be displayed. The default
is to show all of them. Any
negative number means to
show all page numbers.

useText TRUE | FALSE Paging also allows the ability
to include descriptive text
of what page the user is
currently on. When set
to true, the default text
displayed would be something
like the following: "Displaying
rows 4 - 6 of 16". The text
property can be used to
change what text is being
shown. There are a few
placeholder properties that
can be used in the text as
well.

text text Used in conjunction with
the false useText property
to control what is displayed
for text. For example, you
could specify "Displaying
page %page of %totalpages."
which would show something
like "Displaying page 10 of
23." Additional placeholders
are listed below:

%firstrow - the number of the
first row being displayed on
the screen.
%lastrow - the number of the
last row being displayed on
the screen.
%totalrows - the total number
of rows available.
%page - the current page
number being viewed.
%totalpages - the total
number of available pages.

nextAndPrevious TRUE | FALSE Determines whether or not to
display the Next and Previous
page links.

 ©Copyright PlanetJ Corporation 2011

ParameterOperators {}

This property group allows you to override default display behavior of an operation's search
prompts.
Property Value Description
like text This property can be used to

replace the "LIKE" text next
to a search parameter that
uses a "LIKE" statement in the
SQL. Leave this property blank
(e.g. like:;) to get rid of the
operator label altogether.

= text This property can be used to
replace the "=" text next to
a search parameter that uses
an "=" statement in the SQL.
Leave this property blank (e.g.
=:;) to get rid of the operator
label altogether.

< text This property can be used to
replace the "<" text next to
a search parameter that uses
a "<" statement in the SQL.
Leave this property blank (e.g.
<:;) to get rid of the operator
label altogether.

> text This property can be used
to replace the ">" text next
to a search parameter that
uses a ">" statement in the
SQL.Leave this property blank
(e.g. >:;) to get rid of the
operator label altogether.

PDF {}

[PRO] This property group allows you to override how a PDF file is displayed.
Property Value Description
bottomMargin integer Bottom margin.
evenColor #hexColorCode Even color.
evenReportColor #hexColorCode Even report color.
fontSize integer Font size.
headerColor #hexColorCode Header color.
headerFontSize integer Header font size.
landscape TRUE | FALSE Sets page layout to landscape

mode.
leftMargin integer Left margin.
oddColor #hexColorCode Odd color.
oddReportColor #hexColorCode Odd report color.

 ©Copyright PlanetJ Corporation 2011

relativeWidths integer Relative widths controls how
wide your PDF columns will
be. If you have 4 columns,
you might pass in 1,2,1,4 to
have your second column be
twice as wide as the first and
third columns and your fourth
column is twice as wide as the
second. This does not affect
the width of the table, just the
columns within the table. So
passing in 0.5,1,0.5,2 would
have the exact same affect.

repeatTableHeader TRUE | FALSE Repeat table header.
rightMargin integer Right margin.
showGrid TRUE | FALSE Show grid.
topMargin integer Top margin.

PleaseWait {}

This property group allows you to set the JSP used by the please wait function.
Property Value Description
js

p

file path JSP to use. If no file path is
specified in the jsp property
area then the default please
wait JSP will be used.

message string message Message to display from
please wait screen. The
default is 'Please wait
while your query is being
processed...'.

The please wait page is normally used on larger queries or operations that may take longer
than a few seconds to execute. Instead of showing the user a blank screen you will show
them a specified please wait page that informs them the action is occurring. In the example
below, we are not specifying a please wait page URL so that it uses the WOW default.

Specifying a PleaseWait property group in an operation.

 ©Copyright PlanetJ Corporation 2011

Running All Employees operation.

Here is a sample of the please wait page.

 ©Copyright PlanetJ Corporation 2011

When the SQL query finishes, the please wait page disappears.

PossibleValues {}

PossibleValues can be used to change the default possible values behavior.

PossibleValues { fieldName:BasePath; copyList:BasePath,BranchType,BranchName;
copyRule :usageId;}

Property Value Description

fieldName field name This property identifies which
field in the main operation
this configuration belongs to.

 ©Copyright PlanetJ Corporation 2011

copyList A list of comma separated
field names

A list of fields to copy. Used
for copying values from the
possible values row to the
main operation row.

copyRule fieldNames (default), usageId Tells how field values from
the possible value row should
be filled into/mapped to the
actual row once a possible
value choice is selected.
Used for copying values from
the possible values row to the
main operation row.

optgroup field name Used for Possible Values
Grouping.

See the Possible Values section for more details.

ReportBreak {}

Reports are another important feature of WOW. Reports are used to perform different
mathematical operations on the data in the table. Reports will find the minimum, maximum,
sum, or average of any numeric data that is in the table. With a simple SQL command, the
information in the table can be sorted out by specific groups such as work department or
gender. The syntax is:
ReportBreak {}

In between the open and closed brackets, any of the following properties may be added.
Property names must be followed by a colon, the property values should be separated with
a comma, and end with a semicolon. For example:
ReportBreak { columnFunctions:max; columns:salary,comm;

breakColumns:workdept; overall:false;}

Property Value Description
columnFunctions SUM | TOTAL | AVG | MIN |

MAX | COUNT
The columnFunctions
are simple mathematical
commands such as SUM (or
TOTAL), AVG, MIN, MAX, and
COUNT.

columns field,field,… | * The name of the columns
you wanted reports on.
Each column is separated
by a comma. If you wish to
generate the report on every
single column in the results,
you may use an asterisk *
instead of listing every column
name.

 ©Copyright PlanetJ Corporation 2011

breakColumns field,field,… Used to sort data by a
specific field, such as work
department, city, etc. This
property is normally used in
conjunction with the ORDER
BY SQL command.

breakCount field,field,… Used to sort data by index.
See below for an example.

breakText-func text Where func in the
property is replaced by
the columnFunctions
value. This property is used
to change the text of the
break row. For example,
a SUM function would
just say SUM in the break
row. Assigning the breakText-
SUM:Monthly Units; property
would change that text to say
Monthly Units.

overall TRUE | FALSE Whether or not an
overall "grand total" should
be displayed at the bottom
of the table. If you don't add
the overall property group,
it will automatically give an
overall total. Setting overall to
false is the only way to avoid
displaying an overall total.

overallBreakText-func text Where func in the
property is replaced by
the columnFunctions valu
e. This property is used to
change the text of the overall
break row. For example,
a SUM function would just
say SUM in the overall
break row. Assigning the
overallBreakText-SUM:Total
Units; property would change
that text to say Total Units.

reportSingleRow TRUE | FALSE Generate reports for a single
row.

 ©Copyright PlanetJ Corporation 2011

evenCSSStyle text The name of the CSS style
class applied to even report
rows. The default value is
pjr-r-e for normal report
rows and pjr-or-e for overall
report rows. If this report
break property group is used
for both normal and overall
report breaks, then the style
for overall report breaks
cannot be altered from the
default. To specify a style for
overall report breaks, you
need to create separate report
break property groups.

oddCSSStyle text The name of the CSS style
class applied to odd report
rows. The default value is
pjr-r-e for normal report
rows and pjr-or-e for overall
report rows. If this report
break property group is used
for both normal and overall
report breaks, then the style
for overall report breaks
cannot be altered from the
default. To specify a style for
overall report breaks, you
need to create separate report
break property groups.

evenBlankCSSStyle text The name of the CSS style
class applied to even blank
report rows (a blank report
row is used when a report
row would normally be added,
except that there is only one
row over which to report). The
default value is not to apply
any type of special style.

oddBlankCSSStyle text The name of the CSS style
class applied to odd blank
report rows (a blank report
row is used when a report
row would normally be added,
except that there is only one
row over which to report). The
default value is not to apply
any type of special style.

 ©Copyright PlanetJ Corporation 2011

javaClass text The name of the Java class
to use which provides report
break functionality. This
property should only be
specified if you have created
your own custom report break
subclass.

SignOn {}

This property group allows you to specify properties used in the sign-on process. It can
either be specified for an application or an individual authentication operation (if specified in
both places, the properties in the operation will take precedence).
Property Value Description
failureMessage text The message to display to the

user when a sign-on attempt
fails. The default is "Sign on
failed. Please enter a valid
user ID and password."

maxFailures integer The maximum number of
times a user is allowed to fail
the sign-on process. After
this many sign-on failures,
an application specific action
takes place (the default action
is to redirect to the original
sign-on page). By default,
there is no maximum number
of failures.

auto login | rememberMe Activates auto login (auto-
fills last entered user ID and
password and logs user in
automatically) or remember
me (auto-fills the last entered
user ID field).

cookiesMaxAge integer (hours) The length of time (in hours)
the auto login/rememberMe
information is retained in a
cookie.

rememberFields field,field,… A list of fields to remember if
using the "rememberMe" login
feature.

SpooledFile{}

[PRO] This property group controls how an operation’s results will be exported out to a
spooled file. For a spooled file export to be available, you must set the spooledFile property
in the TableDisplay property group to “true”. This property group can be specified in
individual operations, or an application, or both. When an operation’s results are exported,
properties are taken first from the operation, and if not specified in the operation, from the

 ©Copyright PlanetJ Corporation 2011

application.
Property Value Description
align text The horizontal alignment

for the data portion of the
spooled file. This can either
be “left”, “right”, or “center”.
The default value is right
alignment.

colHeaderAlign text The horizontal alignment for
the column headers in the
spooled file. This can either
be “left”, “right”, or “center”.
The default value is center
alignment.

colHeaderSpacingBottom integer The number of empty spacing
lines to put between the
column headers and the first
row of column data. The
default value is one empty
line.

colHeaderSpacingTop integer The number of empty spacing
lines to put between the
spooled file heading and the
column headers. The default
value is one empty line.

connectionAlias text The alias of the connection
to use when exporting the
spooled file to the iSeries. If
this is not specified, then the
operation’s connection will be
used. Whichever connection is
used must be a connection to
an iSeries, and not some other
type of DB system.

displayColumns The columns in the results
which should be exported out
to the spooled file. The default
is all of the columns displayed
in the HTML.

excludeColumns The columns in the results
which should not be exported
out to the spooled file.

fileName text The name of the spooled
file. If you leave this blank
the iSeries will pick a default
name for the spooled file.

 ©Copyright PlanetJ Corporation 2011

generatorClass text The name of an optional Java
class which is used to create
the spooled file. The generator
class must implement
planetj.dataengine.sp
ooledfile.ISpooledFileGe
nerator. If no generator
class is specified, then the
planetj.dataengine.spooledfile
.DefaultSpooledFileGenerator
class is used.

linesPerPage integer The number of lines per page
in the spooled file. The default
is 80.

outQueue text The output queue to which the
spooled file will be exported.
If you leave this blank the
spooled file will be placed
on the default output queue
for the iSeries user which
corresponds to the connection
alias.

relativeWidths integer The relative widths of the
columns in the spooled file.
For example, if this property
was set to “1,2,4,1” then
the second column would
be contain twice as many
characters as the first and
forth columns, and the third
column would have twice as
many as the second column.

spacingBottom integer The number of empty spacing
lines at the bottom of the
page. The default is none.

spacingLeft integer The number of empty spacing
characters on the left of the
page. The default is none.

spacingRight integer The number of empty spacing
characters on the right of the
page. The default is none.

spacingTop integer The number of empty spacing
lines at the top of the page.
The default is none.

userData text An optional informational tag
for the spooled file. The value
is automatically truncated to
10 chars.

width integer The maximum number of
characters in each line of the
spooled file. The default is
132.

 ©Copyright PlanetJ Corporation 2011

SQLContext {}

WOW can handle most complex SQL queries including ones where the table is dynamically
selected. However, the WOW parser is not always able to determine the tables to use for
field FD's. In these cases, the SQLContext property can be used to specify the appropriate
tables from which to retrieve FD's.

NOTE: This replaces the 'tables' property in the StoredProcedure property group since
SQLContext can be used for stored procedures too.
Property Value Description
tables library,table,… A list of tables to use for

the reports field descriptors
(e.g. planetj.customer,
planetj.balancedta;).

When prompting in such complex SQL queries, even though the tables have been specified
using the SQLContext property group, WOW may still not know what FD's to use for each
prompt. In these cases, use the FD parameter notation (e.g. ?1234 where the "1234" is the
ID of the FD to be used or that prompt).

StoredProcedure {}

This property group allows you to set the properties for a stored procedure call.
Property Value Description
rowCollection TRUE | FALSE Return row collection (result

set) by the procedure.
successMessage text Completion message text.
tables library,table,… A list of tables to use for

the reports field descriptors
(e.g. planetj.customer,
planetj.balancedta;).

Styles {}

This property group allows you to specify which CSS styles to use when generating an
operation. Of course, any styles referred to in this property group must be defined in a .css
files which is used by your application's theme.
Property Value Description
body css style name The general CSS style to apply

to the body.
operation operation: text,… The style to use for the

search operation. '=', '>=',
and 'BETWEEN' are all
examples of search operators.
The following example
removes the 'LIKE' operator
and changes '=' to 'equals':

Styles {like: none; =:

equals;}

 ©Copyright PlanetJ Corporation 2011

searchLabel css style name The style to use for the search
label.

submitButton css style name The style for the INPUT button
used to submit the parameters
the user has entered in.

TableDisplay {}

There are many properties in the TableDisplay group. Most of them are all boolean values,
unless specified otherwise (ex. selectionType and cellPadding). Boolean means they are
either set to "true" or "false." If a property is set to true, the feature it controls will be
visible to the user. If the property is set to false, the feature it controls will not be available
to the user. The screen below will be used to demonstrate which icons will appear and
disappear according to the boolean value.

Property Value Description
buttons row top | bottom Designates where the buttons

are located on the table
display. The default is to
show buttons on the bottom
only. To shows buttons
on both top and bottom,
specify both values as
follows: "top,bottom".

chart TRUE | FALSE Show the charting icon
cellPadding integer Padding between the border of

a table cell and the contents of
a table cell, specified in pixels.

 ©Copyright PlanetJ Corporation 2011

colCnt integer Number of columns to
generate for vertical
generated row tables.
Property only applies when
display vertical is true.
Number of columns to display
when showing table results.
Default is 2.

contextMenu TRUE | FALSE Whether or not the context
menu is enabled for the table.
Default is TRUE.

default row action action name | NONE The name of the action which
should be performed when
the row is double clicked. The
default is to open the row for
details view.

delete TRUE | FALSE Show the delete button.
Default is false.

deleteAll TRUE | FALSE Show the deleteAll button. The
default for this setting is false.
Clicking this button deletes all
the data being displayed.

deleteAllText text Text for the delete all button.
details TRUE | FALSE Show details button.
detailsText text Text for the details button.
displayVertical TRUE | FALSE Whether or not the table

should be displayed vertically
(false by default). If true,
colCnt determines how many
records are included per row.

double click text The name of the action to
execute when the row is
double clicked. By default,
double clicking a row opens up
the details screen for that row.

drawGrid TRUE | FALSE Show grid lines. The grids are
the vertical and horizontal
lines that separate the rows
and columns. The default
value is true. Grid lines tend
to improve the look and feel of
the table being displayed.

edit TRUE | FALSE Show the Edit Record button.
editFD TRUE | FALSE Show the red edit FD. The

default value is false. Clicking
this button allows you to edit
the Field Descriptors for the
displayed data.

editText text Text for the edit button.

 ©Copyright PlanetJ Corporation 2011

excel TRUE | FALSE Show the Excel icon. The
default value is true. Clicking
this icon sends the selected
data into a Microsoft® Excel
spreadsheet.

excelXls TRUE | FALSE Show Excel file button.
forceRefresh TRUE | FALSE Force refresh of data before

displaying. The default is
false.

header TRUE | FALSE Show the column header.
helpTextInHeaders ALL | NONE | field,field,… This is a list of the columns

which will display the hover
help text defined in the field
descriptor when the user
hovers over the column
header. You can also use the
special values ALL or NONE
to refer to all columns in the
table. The default value is
ALL, so by default, all column
headers will use their hover
help text.

helpTextInCells ALL | NONE | field,field,… This is a list of the columns
which will display the hover
help text defined in the field
descriptor when the user
hovers over the column cells.
You can also use the special
values ALL or NONE to refer
to all columns in the table.
The default value is ALL, so by
default, all column cells will
use their hover help text. For
large tables, you can reduce
the amount of HTML which
is generated by disabling the
hover help text for cells.

highlight style css class | NONE The name of the CSS class
which is applied to the row
when the cursor is hovering
over the row. The default
value is “pjc-highlight”.

insert TRUE | FALSE Show the insert button.
insertable TRUE | FALSE Determines whether or not

the table should allow direct
inserts without viewing the
details of a single row.

insertText text Text for the insert button.
linkable TRUE | FALSE Determines whether or not

the user has the option to
generate an HTML link directly
to the current results.

 ©Copyright PlanetJ Corporation 2011

msAccess TRUE | FALSE Show the Microsoft Access
quick link.

msWord TRUE | FALSE Show the Microsoft Word
quick link. The default value
is true. Clicking this icon
sends the selected data into a
Microsoft Word document.

multipleDelete TRUE | FALSE Determines whether or not
deleting multiple rows is
supported.

pdf TRUE | FALSE Show the PDF quick link.
print TRUE | FALSE Show the print quick link. The

default value for this is true.
Clicking this icon displays the
selected data in a printer-
friendly format.

refresh TRUE | FALSE Show the refresh pinwheel
quick link. The default value
for this is true. The refresh
button allows you to refresh
the data being displayed,
much like the refresh button
on your web browser.

removeAll TRUE | FALSE Show the remove all button.
rowCopy TRUE | FALSE Text for the row copy button.
rowCopyText text Text for the row copy button.
row select sound text The URL of a sound file. This

sound file will be played when
the user selects the row.

selection style css class | NONE The name of the CSS class
which is applied to the row
which is currently selected (by
a single click from the user).
The default value is “pjc-
selection”.

selectionType NONE | SINGLE | MULTIPLE Indicates how the data in
the table can be selected.
MULTIPLE allows the user to
select more than one entry in
the table at a time with check
boxes. NONE eliminates the
option of selecting specific
entries from the table. The
default value is MULTIPLE.

selectableRecords TRUE | FALSE Determines whether or not the
records in the Table can be
selected.

showSelection TRUE | FALSE Shows the selection buttons
for each record.

 ©Copyright PlanetJ Corporation 2011

single click text The name of the action to
execute when the row is
single clicked. By default,
single clicking the row does
not execute any actions. This
property cannot be specified
if the double click property is
also specified.

sorting TRUE | FALSE Showing descending and
ascending sort buttons next to
column headers. The default
value is true. Sorting allows
you to sort each column by
alphabetical or numeric order.

spooledFile TRUE | FALSE Show the export to spooled
file link.

tableClass subclass You can optionally specify
a subclass of HTMLTable to
use when rendering your
RowCollection.

tableWidth integer Specify width of results table.
updateable TRUE | FALSE Allow each field to be updated

by the user directly from the
displayed table. The default
value is false. By changing this
value to true, you will have
the ability to edit each entry
directly from the table shown.

updateText text Text for the update button.
wrapHeaders TRUE | FALSE Do not allow wrap.
xml TRUE | FALSE Show XML quick link. The

default value is true. By
clicking this icon, WOW will
send the selected data into an
XML document. An XML ready
browser is required for this
option.

Tabs {}

This property group allows you to configure tabs (display the results of an operation in a
tabbed layout).
Property Value Description
allowInTab RESULTS | DETAILS | BOTH |

NEVER
Determines what can be
displayed inside of this tab.

automaticTabView TRUE | FALSE Automatically show the tabbed
view of a query result.

defaultTab tab field name Default tab to display.
emptyMessage text Message displayed to the user

when there are no results
returned. Use in conjunction
with the hideWhenEmpty
property.

 ©Copyright PlanetJ Corporation 2011

hideWhenEmpty TRUE | FALSE Determines whether or not
to display an empty row
collection if there are no
results returned to the tabbed
operation. Use in conjunction
with the emptyMessage
property.

tabFields tab field name,… Specifies which fields are to be
rendered as tabs.

tabFieldsExclude tab field name,… Specifies which fields are not
to be rendered as tabs.

tabHeadingsJSP file path The JSP to display the tab's
headings.

tabParentJSP file path The JSP to display the tab's
parent row.

maxTabsPerLine integer The maximum number of
tabs that can be displayed
in a single line on the screen
(default is 10).

alwaysShowSearch TRUE | FALSE Hide search parameters once
results for the parent tab are
returned.

XLS {}

[EE] WOW can export real time data to an existing Excel spreadsheet. The existing
spreadsheet may have macros, graphs, carts and other items predefined. This property
group allows you to set properties for an Excel worksheet.

Property Value Description
sheetIndex integer Index of Excel

worksheet (starting with
1).

sheetName text Name to give new Excel
worksheet.

xmlFormat TRUE | FALSE Forces Excel export to
use the openxmlformat
for spreadsheets (xlsx).
This allows an export
to contain more then
the restricted 65536
rows.

 ©Copyright PlanetJ Corporation 2011

Sorting

When a query includes an ORDER BY clause, the results of the query will be displayed in the
specified order. The column or columns used in the ORDER BY clause are indicated in the
results by highlighted arrows. For example, these results:

were produced by a query which contained ORDER BY LEVEL in its ORDER BY clause. The
highlighted arrow in the LEVEL column indicates to the user that the results are sorted in
ascending order by the LEVEL column.

When the user clicks on one of the sort arrows in a column, the results are resorted first
by using the column which was clicked on, and then by any columns by which the results
were previously sorted. So in the above example, if the user clicked on the down arrow in
the STATE column, the results would be sorted primarily in descending order by STATE, and
then in ascending order by LEVEL:

 ©Copyright PlanetJ Corporation 2011

NOTE: The sort arrows in both the STATE and LEVEL columns are highlighted, since both of
these columns are used in sorting the results.

By default, all database columns are sortable, and all derived columns are not sortable.
To change the default behavior, you can edit the sortable property for a column in that
column’s field descriptor.

Controlling the Sorting Behavior

This section describes what you can do to control how WOW displays sorting columns to the
user.

Changing the Column Heading

In this example from earlier in the chapter, we have results which are sorted by two
columns, STATE and LEVEL:

 ©Copyright PlanetJ Corporation 2011

The results are sorted first by state, and then by level .

The highlighted arrows in the column headers let the user know which columns are used
to sort the results, but it is not possible to determine the order in which the columns
were used to sort the results without closely examining the values in those two columns.
However, it is possible to have WOW alter the column header to show the sort order as well
as the column name.

For example these results:

 ©Copyright PlanetJ Corporation 2011

are sorted first by STATE and then by LEVEL, which can be immediately seen by looking at
the column names.

Controlling the column names is done with using the heading property of the Sorting
property group. The value specified in the heading property will be shown as the column
name for columns which are used to sort the results. The special placeholders %name and
%sortindex will be replaced with the column name and sorting index respectively. So in the
above example this Sorting property group was used:
Sorting {

heading: %sortindex-%name;

}

If you wanted the sort index to be displayed after the column name with no hyphen, then
the property group would look like this:
Sorting {

heading: %name %sortindex;

}

The Sorting property group can be specified in an Operation, or in an Application (in which
case it will apply to all Operations in that Application).

Changing the Header Style

The css property in the Sorting property group can be used to set a different CSS style on
column headers used for sorting. For example, if this is the sorting property group
Sorting {

heading: %sortindex-%name;

css: sort;

 ©Copyright PlanetJ Corporation 2011

}

Then the CSS “sort” class will be applied to all the headers of columns which are used to
sort the results. (The column headers are TD HTML elements.) In addition, if the LEVEL
column is the first sort column, the “sort_LEVEL” and “sort_1” CSS classes are also applied
to the header. When STATE is the 2nd sort column, the “sort_STATE” and “sort_2” classes
will be applied to that header. This allows different sorting columns to be given different
styles, based either on that column’s name, or sorting index.

If the following CSS classes are defined:
.sort.sort_1 {

background-color: cyan;

}

.sort.sort_2 {

background-color: lime;

}

Then the header of the first sorting column will be cyan, and the header of the second
sorting column will be lime:

Using different colors for the sorting columns is especially useful when report breaks are
displayed in the results.

 ©Copyright PlanetJ Corporation 2011

Associations

Associative programming is one of the key features of WOW. An association links data from
two different tables by using fields that are common for both tables. An association may
also link data from a table to some other functionality. There are SQL, HTML, and Java
associations.

In the example below, we will the EMPLOYEE table with the DEPARTMENT table which can
both be found in the PJDATA schema. Any two tables can be linked together as long as
they have data that is similar or linkable, and the tables are accessible through a previously
created database connection. There are two types of SQL associations that can be used with
WOW; they are 1-1 Association and 1-Many Association.After an association is created a
hyperlink will be available for the user to click on. The screenshot below is an example of
this.

Below is a brief explanation of the different kinds of association, such as 1-1 Associations
and 1-Many Associations.

1-1 Association

A 1-1 Association links a specific field in a table to a single entry. The format is similar to
viewing an entry using the view button described in the introduction. Below is an example of
what to expect after creating a 1-1 Association and following the hyperlink that was created.

 ©Copyright PlanetJ Corporation 2011

1-Many Association

A 1-Many association is the same as a 1-1 association except the 1-Many association will
link you to more than a single row of data. 1-Many associations are useful when there is
more than one row of data you would like displayed. Below is an example of what to expect
from a 1-Many association (notice that it links you to more than one data record as opposed
to the 1-1 Association linking to a single view only entry).

HTML Code Association

Essentially an HTML Code operation with association capabilities, this type of association
allows you to link to some specified HTML. This is an exceptionally powerful feature in WOW
and is often used for stylizing reports and other data.

Full Field Rendering

WOW 6.45 and later includes enhanced support for HTML Code Association scripting.
New support includes the following features, which are coded directly into the HTML Code
Association. The special character of "*" appended as the last character indicates that WOW
should generate the entire field rendering, not just the value. For example, a field with an
association referenced with ??Field will only display the value and not a hyperlink-capable
rendering. However ??Field* would render the entire hyperlink HTML code.
WOW Script Description

 ©Copyright PlanetJ Corporation 2011

??FLDNAME* Using the associated Row, render the entire
fields formatting as defined in its field
descriptor.

NOTE: In all cases, the fields can only be used for display and not for updating databases.
HTML Reference Association

In this association, rather than linking the data between two tables, records, or Rows,
it is linking the current data with some HTML reference. For instance, take the example
listed below. The results have a bunch of Rows with address information. Each Row also
contains a derived field that has its association set a HTML Reference Association that links
to MapQuest®.

Clicking the "View Map" link on the first record would bring up the following:

 ©Copyright PlanetJ Corporation 2011

Associated Java Operation

[PRO] Actual calls to Java methods can be executed via an Associated Java
Operation. These methods must be static and all of their parameters must be of type
java.lang.String, with the exception of a few special cases listed below. This operation
has specific signature that is used to accomplish this task. The name of the class, name of
the method to be called, and the parameters to the method are separated by the "pipe"
special character which is designated as the vertical bar '|'. The first part of the operation is
the fully qualified class name of the class that the method is to be executed on. The second
part of the operation is the name of the method that will be called on the fully qualified
class. This method must be static since there will not be a specific instance of the fully
qualified class. Every part thereafter is a treated as a String parameter to the method.

For example, if we have a class planetj.examples.Log that has method writeEntry which
takes an entry argument that writes and entry to a log located on the file system, it would
be called in the following manner:
planetj.examples.Log|writeEntry|Calling Java method from an operation

This would result in the method writeEntry in the class planetj.examples.Log to be
executed with the String argument of "Calling Java method from an Operation."

 ©Copyright PlanetJ Corporation 2011

There are certain parameters that can be specified that will automatically be filled in with
their associated values.
Parameter Description
*REQUEST Passes the current Request

Object to the method.
*RESPONSE Passes the current Request

Object to the method.
*USER Passes the current User

Object to the method.
*ROW Passes the current Row

Object to the method.
*ROW_COLLECTION Passes the current Row

Collection Object to the
method.

For example, if we have a class planetj.examples.Log that has a method
logParameterValues which takes an HttpServletRequest object that writes all of the
current parameters on that request to the file system, it would be called in the following
manner:
planetj.examples.Log|logParameterValues|*REQUEST

The Associated Java Operation also allows for dynamic entries from the current Row that is
associated with the Operation. For example, if we have an Associated Java Operation that
has the Make, Model, and Year of vehicles and the names of the columns in this row are
specifically "MAKE", "MODEL", and "YEAR", these values can be passed to a Java method in
the following manner:
planetj.examples.Log|logCarMakeModelYear|??MAKE¿|??MODEL¿|??YEAR¿

The dynamic entries must be designated by start and end characters in order for WOW to
determine the beginning and end of the column name. The start characters are '??' and the
corresponding ending character is "¿" (this character can be typed by using ALT+0191).

Creating Associations

Creating an association is very similar to creating any other type of Operation. The first
thing you need to do is create an Operation. To create an association you change the
Operation type from SQL to one of the association operation types. Association operations
have the word "Association" in their display name. Then, you just set its operation code.
After the operation is set, then you need to modify a field's Field Descriptor to set the
association, so when the Field generates, it will have a link to the association. The two
examples below show how to create both SQL and HTML associations.

SQL Association Example

For an SQL association, the operation type should be either a 1-1 Association or a 1-Many
Association. The screenshot below shows an example an SQL 1-Many association:

 ©Copyright PlanetJ Corporation 2011

The Type and Operation Code are the two most commonly used fields when creating an
association. The code used to create an association may vary depending upon the type
of association you are creating (for instance, HTML Associations are different from SQL
associations). The screenshot below shows an SQL association. You only need to pay
attention to the Operation Code. The code shown will link the DEPARTMENT table to the
EMPLOYEE table using the similar fields WORKDEPT and DEPTNO:

The operation code used for this association is:
SELECT * FROM pjdata.employee WHERE workdept = ??deptno

Notice the SQL code is similar to a SELECT SQL statement. The first thing you need to
notice is the table it is selecting from. This table contains the information which we will
link to. Next is the WHERE statement, this statement shows which field the association is
being linked from, in this example the WORKDEPT field in EMPLOYEE is being linked with
the DEPTNO field which is located in the DEPARTMENT table. The linking of the two fields is
done by using an equals (=) sign followed by double question marks (??) and the field the
association will be linked from.

The DEPARTMENT table is not mentioned anywhere in the code because the association link
will be visible in any query on the DEPARTMENT table. After inserting the Association you
will see it listed in the group of other Operations that you have created for your application.
The final step to creating an association is to assign your association to a specific field.
To do this run an Operation to display the table you are using for your association; in the
example above, we are using the DEPARTMENT table so we will run the Operation to display
the DEPARTMENT table. Your query should look similar to the screenshot below, substituting
the table you are using with the DEPARTMENT table:

 ©Copyright PlanetJ Corporation 2011

Once you have a screen similar to the one above, but without the associations, you can
set up the association you previously created. To do this click on the gear icon next to the
column you want to use along with your association. In this example, we will click the gear
icon directly to the right of the DEPTNO column as shown below:

The 'gear' icon located next to each column is used to edit the Field Descriptors of each
field. For now, all you will have to do is locate the association operation field which is found
under the Advanced Settings section.

To activate the newly created association, pick the name that you gave your newly created
association operation. In this example, we will pick the "WorkDept Assoc" operation as
shown below:

 ©Copyright PlanetJ Corporation 2011

Once you have saved your change to the field descriptor, the association is complete. Now,
whenever the DEPTNO field of the DEPARTMENT table is displayed, it will ahve a hyperlink
to the employees associated with that department as shown below.

HTML Code Association Example

In this example, we will demonstrate how the HTML Code Association can be used to easily
arrange and format data. In particular, we are going to be creating simple, dynamic PlanetJ
business cards. In other words, the user will click 'Generate Business Card' and WOW will
use row parameters (??FIELD) to dynamically plug in data to a HTML based business card
template. The goal here is to show you how this association type can be used to format your
data in just about any way imaginable.

Overview

We want to transform our employee data from the standard table layout into a nice, stylized
business card layout.

 ©Copyright PlanetJ Corporation 2011

Create Employee Operation

First, we need to create the operation that will return the data and derived field that on
which we set the association to. Insert a new operation of type 'SQL Operation' and enter
the following Operation Code:
SELECT *,'Generate Business Card' AS busCard FROM PJDATA.EMPLOYEE

Create HTML Code Association Operation

Second, we will create the HTML Code Association that will act as the HTML template for the
business card. Insert a new operation of type 'HTML Code Association' and enter the HTML
given below in the Operation Code field. The blue text is all standard HTML and CSS and,
if you are not too familiar with either, can easily be generated using an HTML editor such
as Adobe® Dreamweaver® or Microsoft® FrontPage®. The important code to note is the
flagged by red text that contains new parameters used to retrieve data from the data row.
These are in the form: ??FIELDNAME.

NOTE: There must always be a space after a row parameter.
<div style="width: 340px; height: 196px; background-image: url(user/sample/

images/PJ_BusinessCard.jpg); background-repeat: no-repeat;">

<!-- Name, Position, Company -->

<div style="position: relative; text-align: right; font-family:

Arial,Helvetica,sans-serif; left: 130px; top: 30px; width: 189px; height:

56px;">

??firstname ??lastname

??position

??company

</div>

<!-- Telephone, Email -->

<div style="position: relative; text-align: right; font-family:

Arial,Helvetica,sans-serif; left: 82px; top: 81px; width: 189px; height:

29px;">

??telephone

??email

</div>

</div>

This HTML code is simply laying our employee data (the row parameters) on top of a
background image.

 ©Copyright PlanetJ Corporation 2011

Set the Association to a Field

Third, and last, we need to assign the association we created in step 2 to the derived
busCard field from step 1. Create a derived field descriptor for the busCard field in the
pjdata.employee table, set its Association Operation to the one created in step 2, and
update.

That's it! All that is left to do is run the application and click the 'Generate Business Card'
field. Hopefully, you have seen from this example that the layout of your data is only limited
to what you can create using HTML and CSS. Invoices, reports, dynamic web pages, etc. are
all as easy as plugging in ??FIELDNAME.

This example only used the basic row parameter. However, by using row parameters with
Full Field Rendering notation, you can generate fields within an HTML Code Association with
all the formatting (possible values, association hyperlinks, etc.) specified in their respective
field descriptors rather than just plain field value.

HTML Reference Association Example

This example will show how to create an HTML Reference Association. We will create an
association which links from a row containing address information to a map of this address.
MapQuest will provide the actual maps; all our association has to do is pass MaqQuest the
address information. First, an SQL Operation needs to be created to select the address
information. The screenshot below shows part of the results from an address file.

You’ll notice that it contains a derived field that has a link to view map for each address.
We’ll get to setting the association, but first, we need to create the HTML Reference
Association. Create an Operation and set its type to HTML Reference Association. For its
operations code, enter the following URL:
http://www.mapquest.com/maps/map.adp?address=??street&city=??city&state=??

state&zipcode=??zipcod&zoom=8

 ©Copyright PlanetJ Corporation 2011

With all operation code strings, you can specify parameters. In the above URL, there
are parameters specified for the street, city, state, and zip code. That way, when the
association is set on a Field, the link to the association will actually have the parameter
values set from its Row’s values. The above results contain the columns: street, city, state,
and zip code. So when the URL link is generated, any Row parameters are replaced with
the Field’s value. The following is the link generated when for the first record, which when
clicked opens up the following map.
http://www.mapquest.com/maps/map.adp?

address=8959+Elm+Ave&city=Dallas&state=TX&zipcode=75217&zoom=8

In order for the link to show up in the results, the association needs to be set on a Field.

 ©Copyright PlanetJ Corporation 2011

In this example a derived field is created. A derived field isn’t absolutely necessary. The
association could have been set on the street field, in which case its display value would be
a link to the map.

Open up the row Manager and click the edit icon next to the FieldDescriptor for the Field
you wish to have the associated map link generated for. Then change the FieldDescriptor’s
association operation to the newly create HTML Reference Association.

By default the HTML Reference Association will open a different window as your application
which in many cases is desired, but in some cases you may want to run the link in the same
window. For this case you need to edit the HTML Reference Association operation and in the
properties section add the property group Browser with the property target set to _self.
Browser {target:_self; }

Associated Inserts

[EE] An Associated Insert will insert a row or collection of rows into the database, using one
or more values from a row in an associated table. It is possible to insert a row where some
of the row’s values are dynamically entered by the user and other values are retrieved from
a row in an associated table.

Creating an Associated Insert is very similar to doing basic 1-1 or 1-many associations.
To create an association, you change the Operation Type from SQL to either the 1-1
Association or 1-Many Association Type. Then you need to set its operation code. After
the operation code has been set, you need to modify a Field’s Field Descriptor to set the
association, so when the field is generated it will have a link to insert in its associated row
or rows. This process is described in detail below:

SQL Associated Insert Example

To create an associated insert, select the Create Operation link from the TOC, and 1-Many
for Operation Type. You next have to enter the Operation Code for the associated insert.
This is very similar to the code for a normal SQL insert, except that you must specify where
to retrieve the associated value for the insert from. For each associated value you wish to

 ©Copyright PlanetJ Corporation 2011

insert, you use two question marks followed by the name of the column containing the data
in the associated table (not the table where the row is being inserted).

The Code shown below will link the Department table to the Employee table allowing you to
insert into the Employee table using the similar fields WORKDEPT and DEPTNO:

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

The operation code used for the Insert:
INSERT INTO PJDATA.EMPLOYEE (WORKDEPT, EMPNO, FIRSTNME, MIDINIT, LASTNAME,

PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, SALARY, BONUS, COMM) VALUES

(??DEPTNO,?,?,?,?,?,?,?,?,?,?,?,?,?)

Notice the SQL code is similar to the normal INSERT SQL statement. In this example,
PJDATA.EMPLOYEE is the table into which data is inserted. The parentheses hold all the
fields which are going to have information inserted. The VALUES clause tells where the
values for this row, with columns specified, will come from. In this example, the WORKDEPT
field, in EMPLOYEE, is being linked with DEPTNO field, which is from the DEPARTMENT table.
The linking is done with the double question marks (??) and the field where the associated
data is being retrieved from. The other single question marks in the parenthesis will take
user input for the new row.

After creating the Associated Insert, you will see it in your list of operations but will not see
it in your application. This is because your operation cannot be directly run. It can only be
initiated once an associated row is available. Now you have to assign your association to a
specific Field in the associated table (in our example, this is the DEPTNO field). To do this.
run an operation that displays the table you are using for your association. In the example
above, we are using the DEPARTMENT table. So we will run the operation to display the
DEPARTMENT table. Then we will edit the field descriptor of the field in the table to be
associated with the insert operation. In our example, we will edit the field descriptor of the
DEPTNO field in the DEPARTMENT table.

Once you have a screen similar to the one above, (but without the hyperlinks), you can
connect the association you previously created. To do this click the gear symbol next to the
field you want to link to your insert operation. In the Field Descriptor Screen scroll down
to the Advanced Setting area (shown below) and set the Association Operation to your
previously created Operation.

 ©Copyright PlanetJ Corporation 2011

Once you have saved your changes to the field descriptor, the association is complete. Now,
whenever the DEPTNO field of the Department table is displayed, it will have a hyperlink to
insert into the employees table with the selected department number and asking the user
for the other values.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Associated Updates

[EE] Creating an associated update is very similar to creating an associated insert, but
instead of inserting a row with values from an associated row, it updates a row with values
from an associated row.

Creating an Associated Update is very similar to doing basic 1- 1 or 1-many associations
(described in at the beginning of this section). To create an association operation, begin
by creating a new operation as described in the Operations chapter. Next, change the
Operation Type from SQL to either the 1-1 Association or 1-Many Association Type. Then
you need to set its operation code. After the operation code has been set, you need to
modify a Field’s Field Descriptor to set the association, so when field is generated it will
have a link to update in its associated row or rows. This process is described below:

SQL Associated Update Example

The operation code needed for an SQL Associated Update is very similar to the SQL
statement for a normal update (described in the Update chapter), with some changes for
the association.
Here is an example for a 1-1 Associated Update: after selecting the Create Operation
from the TOC, select 1-1 for Association Type. The Operation Code is the SQL statement
for updating the database. In our example we will be updating the SALARY field in the
EMPLOYEE table by adding 1000 to the original value, linking from the Department Table.
(We want to update all salaries for a single department only.) The code shown below will
link the Department table to the Employee table allowing you to update entries in the
Employee table with the similar fields WORKDEPT and DEPTNO:

The operation code used for the Update:
PDATE PJDATA.EMPLOYEE SET SALARY = SALARY + 1000 WHERE WORKDEPT = ??DEPTNO

Notice the SQL code is similar to UPDATE SQL statement described in the Update chapter.
In this example, the PJDATA.EMPLOYEE table is being updated. The Set clause sets the
salary equal to the current salary plus 1000. The WHERE clause, shows the which field the
association is being updated from, in this example the WORKDEPT field in the EMPLOYEE
is being linked with DEPTNO field which is the DEPARTMENT table. The linking is done with
double question marks (??) and the name of the field from the associated row which is used
in the update. After creating the associated update you will see it in your list of operations
but will not see it your application. (This is because the associated update cannot be directly
run, it must be invoked after the associated row has been retrieved.)

Now you have to assign your association to a specific Field - in our example this is the
DEPTNO field. To do this run an operation that displays the associated table (in our case the
DEPARTMENT table, shown below).

 ©Copyright PlanetJ Corporation 2011

Once you have a screen similar to the one above (without the hyperlinks) you can set up
the association you previously created. To do this click the gear symbol next to the field
you want along with your association. In the Field Descriptor Screen scroll down to the
Advanced Settings area (shown below) and set the Association Operation to your previously
created Operation.
Once you have saved your changes to the field descriptor, the association is complete. Now,
whenever the DEPTNO field of the Department table is displayed, it will have a hyperlink to
increment by 1000 the SALARY field of the associated rows in the EMPLOYEES table

Associated Deletes

[EE] Associated deletes allow you to delete one or more rows based on the values contained
in an associated row.

Creating an Associated Update is very similar to creating basic 1- 1 or 1-many associations
(described in the beginning of this section). To create an operation for doing associated
deletes, you first create a new operation and set its Operation Type from SQL to either 1-
1 Association or 1-Many Association Type. Then you set its operation code to do the actual
delete; finally you attach the operation to an associated field by editing that field’s field
descriptor. This process is described in detail below:

SQL Associated Delete Example

The operation code needed for the SQL Associated Delete is very similar to a normal SQL
DELETE statement, with some changes for the Association. Our example will deal with a 1-
Many Associated delete. After selecting the Create Operation from the TOC, choose 1-Many
for Association Type and set the Operation Code to the SQL for performing the delete. The
code shown below will link the DEPARTMENT table to the EMPLOYEE table allowing you to
delete entries in the EMPLOYEE table whose WORKDEPT field matches the DEPTNO field of a
row in the DEPARTMENT table:

The operation code used for the Associated Delete:

 ©Copyright PlanetJ Corporation 2011

DELETE FROM PJDATA.EMPLOYEE WHERE WORKDEPT = ??DEPTNO

Notice the SQL code is similar to DELETE SQL statement described in the SQL Delete
chapter. The WHERE clause links WORKDEPT field in the EMPLOYEE table to the DEPTNO
field in the DEPARTMENT table. After creating the Associated Delete you will see it in your
list of operations but will not see it your application. (This is because the operation can
only be run after an associate row has been displayed.) The next step is to assign your
association to a specific field in the associated table (DEPTNO). To do this run an operation
that displays the associated table:

Once you have a screen similar to the one above (without the hyperlinks) you can set up
the association you previously created. To do this click the gear symbol next to the field
you want along with your association. In the Field Descriptor Screen scroll down to the
Advanced Settings area (shown below) and set the Association Operation to your previously
created Operation.
Once you have saved your changes to the field descriptor, the association is complete. Now,
whenever the DEPTNO field of the Department table is displayed, it will have a hyperlink to
increment by 1000 the SALARY field of the associated rows in the EMPLOYEES table.

Join Associations

[EE] One widely used feature of SQL lets you combine, or "join" data from two tables into a
single result table. If your data is on two separate systems however, you cannot use regular
SQL to join it. Using associated joins, WOW gives you the ability to join data from two
separate systems.
As an example, say we have a table (CUSTOMER) on one system with columns ID, NAME,
and BALANCE; and another table (CUSTINFO) on a second system with columns ID and
COLOR; and we want to join the two table together on the ID column, letting the user view
a customer’s name, ID, balance, and favorite color all in a single table. (For our example,
we will assume that field descriptors for both tables have already been created, as described
in the previous chapter, and that connections for both systems have been created.) The first
step is to create the "base" query. This is a normal SQL Operation, selecting the rows of

 ©Copyright PlanetJ Corporation 2011

interest from a single table:

In our example, we are selecting all the rows, but you can use any type of WHERE clause
you wanted with this query.
The next step is to create the "join" query – which should select all the rows from the
second table. Do not specify a WHERE clause in the join query. This operation’s type must
Associated Join:

Note that you will want to specify a different connection alias for the join operation than you
did for the base operation since they are on two different systems.

Next, start the application and run the base operation (only data from one table should be
retrieved):

Click the gear icon to edit the FD of the column you want to join the two tables on. This

 ©Copyright PlanetJ Corporation 2011

column must be common to both tables. In our example, this is the ID column. In the Field
Descriptor Manager window, location the field descriptor’s association operation, and set it
to the Associated Join Operation we created earlier.

Now when the base operation is run again, the results will a join between the two tables on
different systems:

 ©Copyright PlanetJ Corporation 2011

Possible Values

Possible Values are a crucial part of WOW. When a field has possible values, the application
will display a drop down menu with the values that are possible for the field. This is
important because it allows the user to pick a specific value instead of typing in a value
that may or may not be valid. For example, let's say we want to create possible values
so that when a user searches for an employee by department number, they can pick the
department number from a drop down list of all department numbers.

To create Possible Values with WOW, you first need to create field descriptors for the table
with which the possible values will be associated. In our example, this is the EMPLOYEE
table. Once your table has field descriptors, the next step is to add a possible values
operation to your application. To create a possible values operation, click on the "Create
Operation" link that is visible when viewing a list of your application's operations.

Below is an example of setting up a possible values operation:

To setup a possible values SQL operation, the Operation Type must be set to Possible
Values. The SQL command above will select all of the distinct DEPTNO fields from the
DEPARTMENT table (these are the values that the user will be able to choose from).
DISTINCT is used so there is only one instance of each DEPTNO value.

After you have created the Possible Values Operation, you need to associate it with
a specific field. This will be very similar to setting up Associations as described in the
Association section of this guide. To associate our PV operation with a specific field, we will
first run a query on the EMPLOYEE table to display all of its rows. The result will look similar
to the screenshot below:

 ©Copyright PlanetJ Corporation 2011

In the example above, we are setting up Possible Values for the WORKDEPT column. To
setup the Possible Values, click on the 'gear' icon on the immediate right of the WORKDEPT
column name. This will bring up the Field Descriptor Manager application in a new window.
The only section we'll pay attention to will be the Possible Values Settings, which looks
similar to the screenshot shown below:

To complete your Possible Values, find the correct Possible Value that is listed under the
Possible Values Operation (in the example, the "Dept # PV" was chosen). The Operations
listed are all Possible Value Operations that have been created for your specific WOW
application. After finding the corresponding Possible Value Operation, update the screen and
your Possible Value will be setup and ready to use.

Now when we run an operation with this code: SELECT * FROM PJDATA.EMPLOYEE WHERE
WORKDEPT = ?, we will get a drop down with all the possible department numbers available:

 ©Copyright PlanetJ Corporation 2011

Multiple Fields in Possible Values Drop Down

When creating a Possible Values operation, there are times where you may want the
Possible Values Drop Down to include two or more fields to give the user more feedback
and information. When creating a Possible Values operation, such as the one created, the
first field selected is the value or field that is inserted into the database. The second field is
the display value, which is what are going to change so that both department number and
name are shown in the possible values drop down. In the possible value operation, we need
to change the SQL code so that it adds the deptno field and the deptname field together as
shown below:

 ©Copyright PlanetJ Corporation 2011

Operation Code:
SELECT distinct deptno, (deptno || ' - ' || deptname) FROM pjdata.department

When accessing data from an iSeries, you should use the || operator to concatenate fields
together for the display value. If you are using MySQL, then you need to use the CONCAT()
function instead of the || command. In this case the operation code would look like this:

Operation Code:

 ©Copyright PlanetJ Corporation 2011

SELECT DISTINCT deptno, CONCAT(deptno,CONCAT(' – ', deptname)) FROM

pjdata.department

In the above example, the deptno is displayed with a dash and then the department name
is shown:

When "B01 – Planning" is selected, the SQL statement that runs uses "B01" as the actual
value:

 ©Copyright PlanetJ Corporation 2011

Possible Values and the – All – Value

In the above screen shot, notice that WOW has added in a special "– All –" value to the
list of department numbers. The all option lets the user search for employees with any
department number. However the "– All –" choice will only work correctly if your SQL has
been coded properly to handle it.

The "– All –" value always corresponds to a NULL SQL value. This means if your SQL
statement was SELECT * FROM PJDATA.EMPLOYEE WHERE WORKDEPT = ? and the user

 ©Copyright PlanetJ Corporation 2011

selected the "– All –" value, no rows would be returned. This is obviously an incorrect result.
The proper SQL in this case would be SELECT * FROM PJDATA.EMPLOYEE WHERE WORKDEPT =
COALESCE(CAST(? AS CHAR(3)),WORKDEPT). This SQL is written so that if the value supplied
by the user is NULL, then all rows of the EMPLOYEE table are returned, regardless of the
department number.

Customizing the – All – Item

Although WOW puts the "– All –" item into search parameters by default, you can change
this text to anything you like, or even remove it altogether. This text is controlled by the
dropDownItemDisplay property of the OperationLabels property group (property groups
were covered earlier in this chapter).If you wanted the text to say "– Choose –" instead
of "– All –" you would insert the following text into the properties field of your operation:
OperationLabels { dropDownItemDisplay: – Choose -; }

If you like, you can also instruct WOW to eliminate this extra item altogether. This is done
by specifying NULL as the value of the dropDownItemDisplay property:
OperationLabels { dropDownItemDisplay: NULL; }

NOTE: The OperationLabels property group is specified with the regular current operation,
NOT with the possible value operation.
Further Customizing the – All – Item

Whether you change how the "– All –" item is displayed or not, by default the value that
is actually sent to WOW and placed in your query is the special null value. If you like, you
can choose to have a different value placed into your query when this item is selected. Just
specify the value you want using the dropDownItemValue property:
OperationLabels { dropDownItemDisplay: – Choose –; dropDownItemValue:

Nothing; }

The above example would add an item to the possible values drop down with a display text
of "– Choose –". When this item is selected, the value "Nothing" would be sent to WOW.

NOTE: You cannot specify a value for the dropDownItemValue property unless you also
specify a value for the dropDownItemDisplay property.
Removing the – All – Item in a Search

To remove the "– All –" item from a search prompt, go to the FD of the relevant field and
check the "Required on Search" box. This will remove the "– All –" option and force the user
to select a value. This is particularly useful when you have two (or more) different drop
down fields in one SQL operation and only want one field to have the "– All –" item. Rather
than using the OperationsLabels feature which applies to all fields in the operation, you
would use the "Required on Search" feature to selectively remove the "– All –" item.

 ©Copyright PlanetJ Corporation 2011

Removing – Next – and – Previous – from Possible Value List

If you have a long list of choices resulting from your possible values (PV) operation, you
may see the choices "— Next –-" and "— Previous –-" (added automatically by WOW). If
you want to eliminate those choices, increase the Row Count value in the Advanced section
of your possible values operation. For example, if your Row Count is set to 25 and the total
number of choices returned from your PV operation is 35, increase the Row Count to a value
larger than 35.

 PV Multiple Selects

There may be times when an end user wants to select multiple items from a drop down pick
list. This can easily be accomplished using the SQL IN function.
The SQL IN function helps reduce the need to use multiple OR conditions.

The syntax for the IN function is:
This SQL statement will return the records where column1 is value1, value2..., or value_n.
The IN function can be used in any valid SQL statement - select, insert, update, or
delete. To product a drop down (PV list), use the WOW “?” function in combination with the
IN function to produce multiple selects available via hitting CTRL key to multi select.
Example: SELECT * FROM PJDATA.EMPLOYEE WHERE WORKDEPT IN ?
This will select employees from multiple departments. As shown in the screens below, you
must first create the SQL operation:

SELECT columns
FROM tables

 ©Copyright PlanetJ Corporation 2011

WHERE column1 in (value1, value2, value_n);

Then, you will need to also create a PV operation to bring the various work departments into
the drop down like this:

 ©Copyright PlanetJ Corporation 2011

Now, when running the application, a user can click on the
drop down and hold the CTRL key down to select multiple
departments:

Returned results are shown here:

 ©Copyright PlanetJ Corporation 2011

You can see the two different selected work departments rendered. If you want to change
the size of the Possible Values box that is rendered, you can do that by changing the
Display Height in the Field Descriptor here:

Now, the user has a larger drop down box to select from:

 ©Copyright PlanetJ Corporation 2011

Possible Values Paging (Next/Previous)

If you have a long list of choices resulting from your possible values (PV) operation, you
may see the choices "— Next – " and "— Previous – " (added automatically by WOW). You
can click on the "-Next-" to see the next result of Possible Values. If you want to eliminate
those choices or increase the # returned for each page of PV, increase the Row Count value
in the Advanced section of your possible values operation. For example, if your Row Count
is set to 25 and the total number of choices returned from your PV operation is 35, increase
the Row Count to a value larger than 35. A better option for a large # of Possible Values is
the Possible Values Search operation.

Possible Values Grouping [Minimum Version: WOW 6.6 beta]

Recently, functionality was added to allow developers to group their Possible Values inside
the drop-down menu itself. For example, a drop down may contains states and provinces
that you want grouped by country to allow a more user friendly approach to find states/
provinces directly for that country. Technically, behind the scenes, this new functionality
uses the standard HTMLoptgroup element and then a padding-left CSS style added to
our default theme to indent options when inside an option group. Here is an example of a
possible value with the new grouping feature, i

n this example we’re looking at subsystems which are grouped by system area:

 ©Copyright PlanetJ Corporation 2011

In the above screen shot, the following property group is set on the Possible Values
operation: PossibleValue { optgroup:AreaName; }

To use, add the PossibleValues{ } property group to the Possible Values operation and set
optgroup to the name of the field that contains the optional group value. PossibleValues {
optgroup:<field name>; }

NOTE: During generation, a new option group is started when the next option group field's
value changes.
NOTE: Developers should also sort their Possible Values Operation's SQL first by the
optgroup field, otherwise options in the same group could/will not actually be grouped
together.

Possible Value Keys

WOW also comes with several predefined Possible Values. There are Possible Values for
US States, days of the week, and several other common scenarios. To select one of these
predefined possible values for a field, use the Possible Values Key drop down in the field
descriptor.

 ©Copyright PlanetJ Corporation 2011

It is also possible to create your own possible values keys and have them appear alongside
the predefined keys in the drop down. The process of creating your own possible values
keys is described in the Possible Values section of the WOW Utilities chapter.

Possible Values Selector

This operation is very powerful but requires a few steps in order to utilize. This operation is
capable of setting several field values in a row based on the selection of a possible value.
Consider an "order"; an order normally requires many fields to be set in the order header
record. These fields may include the customer number, customer name, shipping address,
etc. When you select the customer for an order, you want to "select" other fields to be
copied into the row.

The SQL specified in this operation retrieves the Possible Values for the field and displays
them like a normal Possible Values operation. The difference for the Possible Values Selector
is when the user selects a value from the Possible Values drop-down, a call is made to the
server which calls the method "handlePossibleValueOperation" on the field associated with
this operation. The default behavior is to copy the values of the operation's SQL query via
common usage id into the source row. The user may also specify to copy via common field
name. This setting is determined by the value of the "copyRule" property of the Display
Groupings Property Group. The valid values for this property are usageid and fieldNames.

For the following example, consider the following 2 tables:

Customer file
CustomerId LastName FirstName CustZip
1 Jones Paul 92029
2 Lawson Fred 57401

Order File
OrderId OrderCustId OrdFirstName OrdCustZip OrdLastName
1 1 Paul 92029 Jones
2 2 Fred 57401 Lawson

Follow these steps to utilize this operation:

1. Typically you will have a normal SQL edit or insert operation. Ex: INSERT INTO
mylibrary.myOrderFile.

2. Create an operation of type PossibleValueSelector with the following SQL:SELECT
customerId AS OrderCustId, lastName || firstName as FullName, lastName

 ©Copyright PlanetJ Corporation 2011

as OrdLastName, firstName as OrdFirstName, custZip as OrdCustZip FROM

myLib.customerFile

a. Notice the use of the "as" feature to map customer field names to their
corresponding order field names. WOW can now copy the fields from the
Customer file into their matching fields in the Order file.

b. Also, it is very important to note that the first two columns selected behave
just like a normal PV operation. The first column is the internal value while
the second column is its corresponding external value. In the case above, the
customer ID (internal value) is masked by the customer's full name (external
value). This only applies to the first two columns. the remaining selected
columns only contain internal values.

c. In the properties of this operation, you must tell WOW to map using the
field names. You can do this by specifying the following property group:
OperationSettings{copyRule:fieldNames;}

3. Now open the field descriptor on the "OrderCustId" field and set the possible
value operation field to the operation created in step 2. Also, set the field
descriptor's "Status Change" to yes, which will force a screen refresh when a new
value is selected. At this time, WOW will attempt to copy the fields from the possible
value row to your current row.

4. As an alternative, you can also set the usage ID values in both the customer
and order file and WOW will copy the fields that have matching usage ID
values. In this scenario you would specify the following property group:
OperationSettings{copyRule:usageid;}.

Possible Values Search

Possible Values Search operation allows you to create any operation with or without search
parameters to find a particular possible value to use for a field. WOW opens the Possible
Values Search operation in a separate pop-up window, runs it after you have specified
parameters and then the user selects the correct value. For example you may have a
possible values operation that returns two thousand options for the user to select; this
can cause problems because of the extremely large size of the drop-down. In this case
you would want the user to be able to search or query down to a more manageable list of
options and then select the correct value.

Steps to Utilize Possible Values Search Operation:

1. Create Possible Values Search Operation
Create new operation and set the operation type to Possible Values Search. In
operation code create a standard SQL select statement; just make sure you specify
the Possible Value field first. Note: Job is the first field in the select because you will
set this PV Search operation to the Job field. The first field returned should always be
the field with a value that you want to use as the Possible Value. After specifying the
other fields plus any search conditions that you want to present the user, then click
the create operation button.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

2. Set Possible Search Operation to desired field's field descriptor

Run an operation that includes the field that you would like to set the PV Search
operation and open that fields Field Descriptor. If no Field Descriptor exists then
create Field Descriptors for the entire table. In this case we set the PV Search
operation to the Job field in a sample employee table as shown below.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

3. Update or Insert with new Possible Value Search

[EE] When you edit (update or insert) a record with the Job field WOW will generate a
retrieve button next to the field. This will retrieve the user's desired possible value by
running the Possible Value Search operation in a new pop-up window.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

4. Retrieve Possible Values

The new pop-up window will run the Possible Values operation in this case searching
last name. After entering in a search parameter value, WOW will bring back a
resultset with all possible values.

5. Populate Field with valid Possible Value (PV)

The returned results have a populate button that when clicked will grab the first field's
(column) value and set as the current field's PV. In this example the first field is Job
and the first populate button is clicked fills the 'MANAGER' value into the field as seen
below.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Now that the value has been filled in proceed as normal with your update, insert or search.
There is no limit to the # of fields that can have Possible Value Search in a particular
operation.

Using Possible Values Search to Populate Other Fields

Possible Values (PV) Search can be configured to populate other values/fields (similar to
Possible Values Selector). The PossibleValues property group is used for this function and
must be placed in the main (not the PV search) operation's properties. In this example, the
PV Search operation should have in it’s results the first 3 fields equal to (same field names,
same order, similar data types)) the copyList fields(BasePath, BranchType, BranchName):

PossibleValues { fieldName:BasePath; copyList:BasePath,BranchType,BranchName; }

● fieldName - This property identifies which field in the main operation this configuration
belongs to. It is needed in case your operation has more than 1 PV Search.

● copyList - A list of fields to copy.
● copyRule - fieldNames, usageId. Defaults to fieldNames. Tells how field values from

the possible value row should be filled into/mapped to the actual row once a possible
value is selected.

NOTE: If using field names (default) for copyRule, make sure the field names match
between the PV Search operation and the main operation. Also, the copyList field
names must be listed in the same order as they are listed in the PV Search operation's
SQL.

NOTE: If the copyList Fields do not match with fields in the main operation, a JS
error will occur and the Populate button will not function correctly.

 ©Copyright PlanetJ Corporation 2011

Auto Population of Fields

To demonstrate this operation, we will be using the same sample data in PJDATA: the
EMPLOYEE and DEPARTMENT tables. We will be using the DEPTNO field of the DEPARTMENT
table as the Target Field to match up with the WORKDEPT field of the EMPLOYEE table.
First, you need to create an operation to display the DEPARTMENT Data, such as "SELECT
* FROM pjdata.department". Next, create a new operation and set the operation type
to Auto Populate. An Auto Populate operation will show up in the list of operations for an
application; however, it will not show up in the application itself. Create the SQL statement
that matches up the field with the information to fill the new row.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

SELECT WORKDEPT, EMPNO FROM PJDATA.EMPLOYEE WHERE WORKDEPT = ??DEPTNO

The SELECT command retrieves the fields WORKDEPT and EMPNO FROM the EMPLOYEE
table. Next, the WHERE statement specifies which field the association is aligned with. In
this example, the WORKDEPT field in the EMPLOYEE table is being linked with DEPTNO field
in the DEPARTMENT table. The link between the two tables is established with the use of the
double question mark (??). This special WOW Builder syntax tells WOW to take the value
for DEPTNO from the current row, which is coming from the DEPARTMENT table. Now the
field needs to be notified that it should use the Auto Populate operation. In the FD Manager,
set the Possible Values Operation for the Field that you want to have the retrieve button
generated next to. In this example, this would be the DEPTNO field.

The key to an Auto Populate operation is that it fills in values for other fields in the same
row as the field that the operation is associated with. This is accomplished by specifying a
usage ID on the fields that need to be populated. If you are pulling information from a file
that has different fields than the file that your detail Row came from, you must specify the
FDs for the fields that return from the file.

Once you have created these FDs, assign the same usage ids to the fields so they will match
up to the fields in the Detail Row (source Row). Certain usage ids are set aside for special
designations such as Email Field (-40), Password Field (-80), and State Field (-120). Special
system usage ids are always negative. You should pick an arbitrary positive # to start your
usage ids from. For this example, the starting value of the usage ID is 5000.

Once again, you must assign a usage ID to each field that is returning from the query, and
also assign that same usage ID to the respective FDs in the Detail Row. For instance, if
the field name in the Detail Row was WORKNO and the field name in the file that you are
retrieving it from was WORKDEPT, you must assign the Usage ID 5000 to both of those
fields so that they will match up in the copy. The Usage ID is set in the Additional Settings
group and the Auto Population operation is set to the possible values operation in the
Possible Value Settings Group (shown below).

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Following these steps will generate the "Retrieve" button next to the DEPTNO field on the
Insert Screen. Enter a department number into the DEPTNO field and press "Retrieve". The
query specified in the Auto Populate operation will be executed. Any resulting fields that
come back from the query that have corresponding usage IDs in the source Row will be
filled in. For example, we used the EMPNO in the SQL statement and it can match up with
the MGRNO. The EMPNO and MGRNO fields need to have the same usage ids to match up,
we used 501. Now the manager number will fill with employee table data when the retrieve
button is pressed with valid department number.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Execution Groups

An execution group is an operation that runs multiple operations simultaneously. Rather
than having multiple operations running separately, they can be grouped together
underneath one single parent operation.

Create A Working Execution Group

To create an execution group, you first create a new or edit an existing operation. Change
the Operation Type under Basic settings to Execution Group and create/update the
operation.
This operation will be the parent operation; you must now create its child operations. To
do so, create or edit another operation and, underneath the Advanced settings header,
change the Parent Operation to the operation created in the previous step.

If you were to run the application, you would find the parent operation of the execution
group (the first operation made in this tutorial) in the menu. If you open the parent
operation, you would see then see the child operation.

Let us make a second child operation in order to truly demonstrate the ability of Execution
Groups. Create another child operation following the steps above and set its Parent
Operation to the same as before. Now, run the application again and open the Execution
Group.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

The displayed result should be similar to the sample figure above, depending on what your
child operations were set to do. In the sample above, the operations used are as of follows:

● Execution Group 1, type: Execution Group
● (Child) View All Employees, type: SQL; SELECT * FROM PJDATA.EMPLOYEE
● (Child) Search By Department, type: SQL; SELECT * FROM PJDATA.EMPLOYEE WHERE

WORKDEPT = ?

 ©Copyright PlanetJ Corporation 2011

Blob File Upload and Download

[EE] Instead to setting up WOW as a File Server there may be cases where you would
actually like to store files inside of the database rather than on the Application Server.
WOW can upload any file into a blob field of a database or you can serve documents off of
WOW from a database blob field. Some examples include storing/serving contracts, forms,
pictures, PDFs and Word documents that are associated with records in the database.
Any type of binary file can be served or uploaded into the blob field using WOW. In this
example, the WOWSAMPLES.EMPLOYEEFILES table will be used.

The table used to store blob entries and other files including attachments must contain at
least the required fields marked with a * below (and have the specified usage ID if needed).

The fields and their possible values are as follows:

● ID – A unique ID assigned to each blob file. *
● EMPLOYEENUM – This field is used to match files to the employee table.
● FILENAME – The file name. * Usage Id: -200
● DESCRIPTION – A description of the file.
● MIME_TYPE – Type of file specification. * Usage Id: -190
● FILE_SIZE – Size of the file being stored in the database. * Usage Id: -210
● UPLOAD_TMSP - The timestamp of when the file was uploaded.
● LAST_DOWNLOAD_TMSP - The timestamp of when the file was last downloaded.
● FILE_BLOB – Blob field that stores the file. *

Any file can be used to store the blob field but it must at least have the required fields and
usage IDs set from the files table above.

Set Up File Upload

[EE] In this example, we will upload some files and associate them with employees from the
pjdata.employee table. The operation we used, All Employees, selects some basic fields
from the employee table and also includes a derived field called d_upload_files.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Create the derived field descriptor for d_upload_files.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Here is the File Upload All Employees operation without associations:

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

After creating the derived field, we need to create FDs for the employeefiles table. The
employeefiles table will hold the files associated with each employee. In the Connections
screen, click on the "Edit FD's" link next to the relevant connection and navigate to
wowsamples.employeefiles. Under table functions, click the "Create FD's" link. Edit the
FILE_NAME, MIME_TYPE and FILE_SIZE field descriptors and set their usage IDs.
FILE_NAME: -200

MIME_TYPE: -190

FILE_SIZE: -210

NOTE: If going against MySQL, WOW sometimes recognizes BLOB fields as SQL Type
VARBINARY. For file upload to work correctly, we need to use the Blob SQL Type as shown
below.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Next, create an associated operation to insert the related files into the database. In this
case we have already set the usage ids for FILE_NAME, MIME_TYPE and FILE_SIZE and
have set the ID field to auto increment. These fields will be filled in automatically when we
try to insert a new file. Now, we need to associate the file with a particular employee, so we
will default the employeenum field to ??EMPNO which fills in each employee's number from
the employee table.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

The associated insert operation will be a standard insert statement except for a few
property changes. First, we only want to insert one file at a time so we need to change the
operations row count to 1 instead of 50.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Now that we have set the required usage ids for the other relevant fields, we want to only
show the blob_file field when inserting. To do this we must add the blob_file to the details
property of the DisplayColumns property group: DisplayColumns{details:blob_file;}

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

After we have inserted the operation, we then need to associate with the d_upload_files
field. Open the d_upload_files FD and set the Associated Operation to the upload file
association operation that was just created.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Run the Employee operation and click on the "Upload File" link.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Use the browse button to find the file, image, or document that you would like to upload to
the blob field and then click the insert button. If your BLOB_FILE field does not have the
[Browse...] button next to it, check the FD and ensure that the Display Component is set
to "File Upload" as in the image below:

Now, you will have a file that is associated with the employee and stored in a blob field.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Here is the blob file upload file explorer screen.

Here is the filled blob file upload field.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Set Up File Download

Now that we have setup file upload, we also need to have the ability to download or open
those files from the database. In this example, we will edit the All Employees operation and
add another derived FD called d_view_files.
SELECT 'Upload File' AS d_upload_files,'View Files' AS d_view_files, empno,

firstnme, lastname, edlevel, image FROM pjdata.employee

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Now, we need an associated operation which will show all the files associated with a
particular employee. Create an Association 1-Many operation to show all files associated
with the selected employee.
SELECT * FROM wowsamples.employeefiles WHERE employeenum = ??empno

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Associate this operation with d_view_files FD. Then, run the All Employees operation. Now
there is an "All Employee Files" link which can be clicked on to see all of the employees'
files.

 ©Copyright PlanetJ Corporation 2011

After viewing all files, we need to create a file download operation to actually download the

 ©Copyright PlanetJ Corporation 2011

file to the local computer from the blob field. Create a new operation of type File Download
and select the relevant record from the employeefiles table.
SELECT * FROM wowsamples.employeefiles WHERE id = ??id

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Now that the download file association is created, we can associate it with the "View
Employees Files" operation, specifically, the file_name FD.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Now, when a user clicks on the field name they will be prompted to download the file to
their local file system.

 ©Copyright PlanetJ Corporation 2011

 ©Copyright PlanetJ Corporation 2011

Work Flow

Traditional WOW development easily handles operations such as data lookups, edits,
deletes, and provides some "work flow" via associated operations. More complex
applications require real "work flow". Work flow is the logical transition through a number
of screens. The sequence of screens could lead to some composite transaction at the end of
the process. An example would be an application that enables making an airline reservation.
To enable this capability, two new features have been created:

■ Global Variables
Variables that can be created and shared throughout a user's session. Global
variables are established and created by setting the field descriptor's UsageId to -3.
When WOW processes an associated selection, insert, update, or delete of a row, any
fields present that are marked as Global are set in the user's session and available to
other operations. Other operations may reference those global variables using "??!"
followed by the field name (e.g. ??!orderNum). Global variables remain in effect until
a row containing that variable is selected, updated, inserted, or deleted and the new
row field values override the previous values. Global values can also be references in
another field descriptor's default value.

■ Next Operation
WOW operations now have a field called "Next Operation" which allows the selection
of another operation to execute when the current operation completes. The current
operation completes when a row is inserted, updated, or deleted. At that time, the
next operation is executed. The next operation may, in turn, have a next operation
specified, thus enabling a complete flow of an application without the need to
manually program.

 ©Copyright PlanetJ Corporation 2011

Example 1

A common business scenario involves creating orders by first inserting an order header
such as customer name, order number, address, date, etc. Upon completion of the order
header record, the user is then allowed to enter order detail records. In this example, the
WOW developer would specify the order number (in the order header) as a global variable
by setting its field descriptor to –3. Assuming both order header and order detail files
have an order number field, the order number field (in the order detail file) would have
its field descriptor's default value set to "??!OrderNumber" where OrderNumber is the
field in the order header file. When each order detail record is created, its order number is
automatically set to the value in the order header (which is the global variable set in the
current session). This allows the complete ordering process to be carried out cohesively.
Each new order would get a new order number and each order detail would be tied to its
order header.

Example 2

Another common scenario for the work flow feature is a confirmation page. For instance,
if an end user inserts a bug report record, it may be desired to show a confirmation page
assuring the user that his entry has been accepted and will be acted upon. In this case,
mark any fields in the bug report's field descriptors as global by setting the UsageId to –3.
Create a HTML code operation that includes confirmation text as well as the desired global
variables. For example:
"Your bug report has been logged and the ID is: ??!problemNum"

Advanced Work Flow

Sometimes, more complicated work flow scenarios may require programmatic control
in terms of what the next completed operation should be. For example, an international
flight reservation may require a different sequence of steps (operations) then a domestic

 ©Copyright PlanetJ Corporation 2011

flight. Or, if an insurance quote is inserted and it is more than 10,000,000 then it requires
additional info, etc. To accommodate these advanced work flow needs, the WOW Java based
framework can be overridden allowing you to control the exact flow. For more information,
see the section on work flow in the WOW Programmer's Guide.

 ©Copyright PlanetJ Corporation 2011

Context Menu
Controlling Actions in the Context Menu

There are many ways that the context menu can be modified. This will be described in steps
below.

Disabling the Context Menu

If the contextMenu property is set to false in the TableDisplay then the entire context menu
will never be displayed for any rows in that table.
TableDisplay{

contextMenu: false;

}

Removing Actions from the Context Menu

By default the context menu will contain all of the rows' actions. If you do not wish an
action to show in the context menu, set the contextMenu property to false in that action's
ActionDescriptor property group. For example, an operation with the following property
groups:
ActionDescriptor{

name: CDT10;

actType: row;

contextMenu: false;

label: 10% Increase;

dspOrder: 10;

}

ActionDescriptor{

name: CDT50;

actType: row;

label: 50% Increase;

dspOrder: 20;

}

would have a context menu like this:

Notice the
10% Increase action is not included in the context menu.

 ©Copyright PlanetJ Corporation 2011

Showing Actions Only in the Context Menu

You can use the loc property of the ActionDescriptor property group to show actions only in
the context menu. If the loc property is not present or is left blank then WOW will show the
action both inline in the row as well as in the context menu. If the location "context menu"
is the only location specifically listed in the loc property, then WOW will show the action in
the context menu, and will not show the action in any other location. So an operation with
these property groups:
ActionDescriptor{

name: CDT10;actType: row;

loc: context menu;

label: 10% Increase;

dspOrder: 10;

}

ActionDescriptor{

name: CDT50;

actType: row;

label: 50% Increase;

dspOrder: 20;

}

would result in the following context menu:

Notice that the 10% Increase button does not appear in the row actions, only on the
context menu.

Suppressing Built-in Actions

Normally WOW will include applicable built-in actions in the context menu such as View,
Edit, and Delete. These actions will only show if the row supports that action. (For example
the context menu will not contain a Delete action if the row cannot be deleted.) However
you can also suppress these built-in actions using the ActionContextMenuDescriptor
property group. The ActionContextMenuDescriptor property group is a property group
which applies only to actions in the context menu. All properties in the ActionDescriptor
property group are also present in the ActionContextMenuDescriptor property group, except
for the loc property (since the context menu is the only location to which that property
group applies). Setting the dspTyp property to “none” in the ActionContextMenuDescriptor
property group will prevent the built-in action from being displayed in the context menu.

In order to hide the "Edit" in context menu:

 ©Copyright PlanetJ Corporation 2011

the following property group could be put into the operation properties:
ActionContextMenuDescriptor{

name: edit;

actType: row;

dspType: none;

}

Now the row's context menu will not contain the Edit action:

 ©Copyright PlanetJ Corporation 2011

Controlling the Context Menu Appearance

There are many situations in which you may want to control the appearance of the context
menu. We will go through some of these scenarios in depth here in this chapter.

Using Different Action Descriptors

In some cases you may have a single action which should be displayed in a certain way in
the context menu, and displayed a different way inline in the row.
Consider these property groups:
ActionDescriptor{

name: CDT10;

actType: row;

label: 10% Increase;

dspOrder: 10;

}

ActionDescriptor{

name: WARN;

actType: row;

dspType: link;

imgsrc: /dataengine/images/epoint.gif;

dspOrder: 20;

}

The operation screen for these properties would look like this:

The same gif is used to display the WARN action in the row and in the context menu,
and the same text is used to display the “10% Increase” action in both places. Using the
ActionContextMenuDescriptor property group you can set display properties which apply
only to the context menu. When a ActionContextMenuDescriptor is present for an action,
then the ActionDescriptor property group is not used to render that action in the context
menu. With these property groups:
ActionDescriptor{

name: CDT10;

actType: row;

label: +10%;

dspOrder: 10;

}

ActionDescriptor{

name: WARN;

actType: row;

dspType: link;

 ©Copyright PlanetJ Corporation 2011

imgsrc: /dataengine/images/epoint.gif;

dspOrder: 20;

}

ActionContextMenuDescriptor{

name: CDT10;

actType: row;

dspType: text;

label: 10% Increase;

}

ActionContextMenuDescriptor{

name: WARN;

actType: row;

dspType: text;

label: Send credit warning;

}

The screen now looks like this:

CSS Properties

The following CSS Properties are used to control the appearance of the context menu:
● actionmenu - Applied to both TABLE and DIV elements which comprise the context

menu. (The TABLE is contained in the DIV)
● actMI - Applied to each TR in the context menu. There is one TR for each action.
● actDefMI - Applied to the TR in the context menu which represents the action which

is the default action for the row.
● actMI-hlight - Used for the highlighted TR element, which represents the action

within the context menu over which the mouse is hovering.
● actSep - Used for the TR element which acts as a separator between different groups

of actions.
● hidden - Applied to the TR element for actions which are in the context menu but

cannot be run.

To change the look and feel of the context menu you can change/replace the definition of
these CSS styles.

Action Groups

The group property in the ActionDescriptor and ActionContextMenuDescriptor property
groups can be used to assign multiple actions to a single group. The context menu will show
a separator between different groups of actions. These property groups:

 ©Copyright PlanetJ Corporation 2011

ActionDescriptor {

name: CDT10;

actTyp: row;

label: 10% Increase;

loc: context menu;

group: credit limit;

dspOrder: 10;

}

ActionDescriptor {

name: CDT50;

actTyp: row;

label: 50% Increase;

loc: context menu;

group: credit limit;

dspOrder: 20;

}

ActionDescriptor {

name: WARN;

actTyp: row;

loc: context menu;

label: Send credit warning;

dspOrder: 30;

}

would result in this context menu:

Notice the actions divided into 3 different groups, the "credit limit" group, the send credit
warning action and the common row actions (Edit, View,Copy).

Different Actions for Different Rows

If you are writing custom code then you can have different actions appear in the context
menu depending on which row the user clicks on.

The actions which may appear in the context menu are determined by the first row of the
results. An action may not appear in the context menu unless it is an action for that first
row. However, if an action is not applicable for a particular row then it is not shown in the
context menu for that row. The Row.isActionApplicable(String, ExecutingContext) method is
used to determine whether or not an action is applicable to a particular row. If this method
is overridden to return false for certain rows, then for those rows only the action will not be
displayed in the context menu.

All actions are applicable for this row:

 ©Copyright PlanetJ Corporation 2011

Some actions are not applicable, and therefore are not displayed, for this row:

Notice that the second customer does not have the Credit Limit Increase options in the
context menu.

 ©Copyright PlanetJ Corporation 2011

Auto Complete
Fields in WOW can be configured to be "auto complete" fields. When a user begins typing
information into an auto complete field, WOW will show a drop down containing the possible
values which could complete the user's typing, and highlight the first possible completion.
For example, a user may be searching on a state value as shown below:

When the user types an 'M', all the states beginning with the letter 'M' are shown. The first
match (Maine) is highlighted.

The user continues to type, entering an 'i' after the 'M'. Only states beginning with 'Mi' are
shown

Next, the user types an 'n'. The only matching state (Minnesota) is shown in the drop down
and has been auto completed in the search field.

At any time during the typing, the user could also use the arrow keys or mouse to select
a different value from the drop down to populate the search field with. Using an auto
complete field can be useful if there are too many possible values to display in a normal
possible values drop down, or if you want to show the user the possible values for the field
while still allowing the user to enter a new value which is not among the existing possible
values.

 ©Copyright PlanetJ Corporation 2011

Configuring Auto Complete Fields

In this section, we will configure an existing search field as an auto complete field. We will
start out with a simple SQL query which asks the user to enter in a state to search on. Here
is the SQL operation:

The CNTSTATE column in the database contains state abbreviations (two characters). So in
order to find any matches, the user will have to enter in a matching state abbreviation.

This is what the search screen looks like before auto complete is configured:

To use the auto complete feature, we must first create a possible values operation for the
auto complete field. This operation is responsible for taking what the user has entered in
the search field and returning the matching possible values. The returned possible values
can contain both an internal value (in the first column) and a display value (in the second
column). For example, when the user is searching for a state, the internal value may
be "CA" and the display value would be "California". Here is what our example possible
values operation looks like:

The possible values operation will search a file containing both the state abbreviations and
the full state names, based on a partial state name entered by the user. This partial state
name will be pulled from the CNTSTATE field, which is the field that will be displayed on
the screen by the main search query. All possible values operations for auto complete fields
should use a LIKE comparison in the SQL, since the goal is to find all matches which begin
with a value entered by the user.

 ©Copyright PlanetJ Corporation 2011

Our possible values operation returns the state abbreviation in the first column, since that is
the internal value required by our primary search. The second column contains the display
value (the full state name). The internal value will never be displayed on the screen - the
display value is shown in both the drop down and the search field. When data is sent to the
database however, WOW will always use the internal value and not the display value.

The next step is to configure the field descriptor for the auto complete field, which is the
CNTSTATE field in our example. The display component should be set to Auto Complete, and
we must also select the possible values operation we created. In this example we also need
to adjust the field size from 2 to 15. The field size was set to 2 when WOW created the field
descriptor, since the column holding the state abbreviations in the database can only hold
2 chars. However we want to allow the field to contain the full state name and not just the
abbreviation, so we have to increase the field size. This only affects the field within WOW -
the database table can still only hold 2 characters.

 ©Copyright PlanetJ Corporation 2011

After making the above changes to the field descriptor, our auto complete field is now ready
to go. We can run the search, and as we type values into the search field WOW will run the
possible values operation to retrieve the possible values matching what has been entered in
the field and display them in the drop down.

 ©Copyright PlanetJ Corporation 2011

Auto Complete Properties [PRO]

Once you have an auto complete field configured, you can further customize it using an
AutoComplete property group. WOW will look for AutoComplete properties first in the
possible values operation for the auto complete field, then in the main query operation,
and finally in the application. (AutoComplete properties can be specified in any of these
locations, but properties in the possible value operation will take precedence over those in
main operation, and properties in the application are overridden by properties from either of
the other locations.)

The properties available in the AutoComplete property group are listed below. In general,
you can use an AutoComplete field without setting any of these properties – you only need
to specify them if you want to change the default setting.

● cache timeout – The number of seconds items are retained in the special auto
complete cache. This cache is intended to reduce the number of times WOW needs to
query the database when the user is typing multiple characters at once. (For example,
if we have already searched for states beginning with ‘M’ and a half second later we
are now searching for states beginning with ‘Mi’, it will be quicker to search among
the previously retrieved states than to run another database query.) The default is 15
seconds. (Setting this property to -1 will turn off the special auto complete cache.)

● case sensitive – Whether or not the auto complete search is case sensitive. The
default is false. Case sensitivity in auto complete searches also depends on the
database connection settings for LIKE comparisons. If the connection setting does not
match the auto complete setting, then auto complete searches will return inconsistent
results.

● count – The maximum number of values to display in the drop down. This defaults
to the Row Count of the possible values operation. Using a higher Row Count can be
beneficial since it allows WOW to retain more values in its cache, which can improve
performance. So in some cases you may want WOW to read and cache more possible
values than you want to display on the screen, which is why you would adjust the
count property.

● css – This is the CSS class which is used to display the drop down. The default value
is “pjAutoComplete”.

● focus – Whether or not the drop down can appear when the field gains focus, or if
the user has to actually type in order for the drop down to appear. The default is false
(meaning the user has to type) unless the min chars property is set to 0, in which
case the focus property defaults to true. If the focus property is explicitly set, the min
chars setting does not matter.

● item css – The CSS class used to display individual items in the drop down list. (The
items are rendered as HTML DIV elements). The default value is “pjACItem”.

● highlight css – The CSS class used to display the highlighted item in the drop
down list. (The items are rendered as HTML DIV elements). The default value
is “pjACItemH”.

● min chars – The minimum number of characters which must be present in the search
field before the drop down is displayed. The default is 1. This property is related to the
focus property.

● strict – This is a comma separated list of modes where WOW will enforce strict
possible value behavior on the auto complete field. When strict behavior is being
enforced, WOW will display an error message if the user enters a value which is not
among the possible values. The possible modes for this property are copy, edit, insert,
and search. You can also use the special NONE value. If this property is not specified
(or is left blank) WOW will enforce strict behavior in copy, edit, and insert modes.

 ©Copyright PlanetJ Corporation 2011

● strict message – This is the error message WOW will display when the user enters
a value not among the possible values when strict behavior is being enforced. The
default is "You must select a value from the drop down list".

 ©Copyright PlanetJ Corporation 2011

Auto Complete Advanced Configuration

This section contains information on additional ways to configure and customize auto
complete fields.

Formatted Display Value

In the previous example, we saw how an auto complete field handles display values
differently than internal values. There is an optional third type of value, a “formatted display
value” which can be used to display additional information in an auto complete drop down.
For example, if the user is searching for accounts by state, we can use the drop down to
show how many account are in each state, like this:

In this situation, each possible value contains 3 distinct values: the internal value (“MA”)
which is used internally in database queries but never displayed; the display value
(“Massachusetts”) which is shown in the search field; and the formatted display value
(“Massachusetts 2 accts”) which is shown in the drop down.
There are two ways to use a formatted display value in the auto complete drop down. The
first is to change your possible values query to return a third column of results. The third
column should include any HTML formatting, and will be used as the display value. Here is
the possible values query which produces the above auto complete drop down.

 ©Copyright PlanetJ Corporation 2011

The third column in the query contains both data (the CNT value from the join table) as well
as HTML formatting for displaying the data.

The second way to use a formatted display value involves creating a custom Row subclass
in Java. If your custom Row subclass is used as the row class by the possible values query,
then it should extend the planetj.dataengine.possiblevalues.AutoCompleteResultRow class.
You can then override the getFormattedDropDownValue(ExecutingContext) method to
supply the formatted display value for that result row.

When using a formatted display value, it is important to remember that the formatted
display value is never shown in the auto complete field itself, only in the drop down.
Therefore it is the display value (and not the formatted display value) that is plugged into
the possible values query and determines which possible values should be displayed in the
drop down.

SQL-based Auto Complete [PRO]

In the previous examples, once all of the possible values were selected from the database
Java was used to filter out those not matching the value entered by the user. In most cases
this is adequate, however in cases where there are a large number of values to be filtered,
doing the filtering in Java may be a performance issue. It is possible to use SQL to select
only values matching the user’s entry from the database; this can improve performance but
increases the complexity of the possible values SQL.

Using SQL-based Auto Complete

 ©Copyright PlanetJ Corporation 2011

In order to use SQL-based filtering, you need to set the type property in the Auto Complete
property group to SQL:
AutoComplete{

type: SQL;

}

This informs WOW that the SQL in the possible values operation will take the value entered
by the user into account, and therefore it is not necessary to filter the rows returned from
the database.

The main query will be exactly the same for both SQL-based and Java-based auto complete.
We will use the query from the first example in this section, where the user was searching
for county names by entering a state. The SQL for that query was
SELECT * FROM jetemp.COUNTY WHERE CNTSTATE = ?

In the Java-based auto complete scenario, the SQL for the possible values query was:
SELECT STCODE, STNAME FROM JETEMP.STATES

order by STNAME

For an SQL-based auto complete scenario, we need to change the possible values SQL to
be:
SELECT STCODE, STNAME FROM JETEMP.STATES

WHERE STNAME like ??CNTSTATE or cast(??1 as CHAR(10)) IS NULL

order by STNAME

This possible values operation will search a file containing both the state abbreviations and
the full state names, based on a partial state name entered by the user. The partial state
name will be pulled from the CNTSTATE field, which is the field that will be displayed on
the screen by the main search query. Including the user’s value in the SQL means that
all rows returned by this query can be shown to the user in the auto complete drop down
– no additional filtering in Java is required. All possible values operations for SQL-based
auto complete fields should use a LIKE comparison in the SQL, since the goal is to find all
matches which begin with (or contain) a value entered by the user.

Derived Fields

If you are using SQL-based auto complete, then the possible values SQL query will use
the LIKE comparison, which means that only a String based field can be used as the auto
complete field. In order to use SQL-based auto complete on a non-character column in the
database a derived field is required. (A derived field a logical field within WOW which does
not directly correspond to a database field.) A derived field can also be used in cases where
you want to use auto complete on a field while searching, but not when editing that field in
a row.
In order to demonstrate using a derived field with auto complete, we will consider a case
where we want to search for an account by account number. The account number is stored
as DECIMAL data in the database, so we will need to use a derived field in order for auto
complete to work. We will display the account number and the name of the account owner
in the auto complete drop down.

The first step is to create a derived field descriptor in the table we are querying. You can
name this field descriptor whatever you want, however you should make a note of both its
name and its ID. The database type and type name should both be set to CHAR – this will
cause the field to be created as String field. Ensure that the size of this field is adequate
to hold whatever values may be displayed/entered by the user in the search field. (In our
case we need to make the field big enough to hold the account number plus the name of the

 ©Copyright PlanetJ Corporation 2011

account owner.)

For the main query, we will want the prompting to use the derived field (which is a String
field) as opposed to the normal field for that database column (which is not a String field).
This is accomplished by using the ID of the field descriptor in the operation query. In this
case, the field descriptor’s ID is 711628. We will also have to use the SQL CAST function
in order to compare the character data in the derived field to the non-character data in the
database field.

 ©Copyright PlanetJ Corporation 2011

Next, we create the possible values operation as usual for the auto complete field. The
possible values operation should refer to the value in the derived field, since that is the field
displayed on the screen where the user will be entering values into. In our example, our
derived field is the ID_AUTO_COMPLETE field. This operation will probably also have to use
the CAST function to convert the non-character data in the database to CHAR data.

Finally, return to the derived field descriptor created in the first step, and set its display
component to Auto Complete, and its possible values operation to the possible values
operation created earlier. (The possible values operation did not exist when we first created
the derived field descriptor, or else we would have set it then.)

 ©Copyright PlanetJ Corporation 2011

Now our auto complete search field is set up. As the user types in an account number, the
matching account numbers along with the account owner’s name is displayed in the drop
down.

Auto Complete Fields in Rows

So far, the examples in this section have focused on using auto complete fields as

 ©Copyright PlanetJ Corporation 2011

parameters in a query. This is the most common scenario where auto complete fields will
be used. However, if an auto complete field is selected as the result of a query, then the
displayed field will retain its auto complete behavior in the results. If you only want to use
auto complete during the query prompting and not after the field is selected, then you can
use a derived field with auto complete for the query prompting, in which case the fields
in the results will not use auto complete. See the Derived Fields heading above for more
information on using derived auto complete fields.

If you do want to have auto complete fields in your results, and you are using SQL-based
auto complete, then you may need to make further adjustments to the possible values
query in order to show the correct display to the user. To demonstrate this we will look at
the very first auto complete example from above. The main query was selecting a list of
counties by state.

Here is the SQL:
SELECT * FROM jetemp.COUNTY WHERE CNTSTATE = ?

The first page of results when we run the query looks like this:

Notice that the state column shows the internal value “MN” instead of the display
value “Minnesota”. When an SQL-based auto complete field appears in the results, by
default WOW will show the internal value. This is not a problem if the display and internal
values are the same, but in this case they are different, and we want WOW to show the
display value. The possible values SQL for the CNTSTATE field (which is the auto complete
field) is:
SELECT STCODE, STNAME FROM JETEMP.STATES WHERE

STNAME like ??CNTSTATE or cast(??1 as CHAR(10)) IS NULL

order by STNAME

The STCODE column contains the internal values, which in our case are state abbreviations
like “MN”. The STNAME column contains the display values, like “Minnesota”.

In a non-auto complete scenario, WOW uses the possible values operation to convert the

 ©Copyright PlanetJ Corporation 2011

internal value into a display value. However for an SQL-based auto complete field, the
possible values operation is used to convert a partial display value (entered by the user)
into an internal value. The “normal” non-auto complete possible values query for this field
would probably look like this:
SELECT STCODE, STNAME FROM JETEMP.STATES

order by STNAME

In cases like our example we need the possible values operation to do one of two things,
depending on whether or not the field is currently being used for an auto complete lookup,
or if the field is just being displayed to the user.

The two possible values queries listed above are the same, except for the WHERE clause.
So we can combine the two queries into a single possible values query by using the correct
WHERE clause:
SELECT STCODE, STNAME FROM JETEMP.STATES WHERE

STNAME like ??CNTSTATE or cast(??1 as CHAR(10)) IS NULL

OR NOT (??*AUTO-COMPLETE)

order by STNAME

Notice the special ??*AUTO-COMPLETE parameter. When the possible values query is being
used for auto complete purposes, this value will be true, and therefore the WHERE clause
will filter rows for the auto complete query. In other cases, such as retrieving the display
value for an internal value, ??*AUTO-COMPLETE will evaluate to false, and the WHERE
clause will not filter out any rows.

By constructing a possible values query which uses the ??*AUTO-COMPLETE parameter
in the WHERE clause, your possible values query can be used for both auto complete and
non-auto complete scenarios. After changing the possible values query as described above,
rerunning the main query gives these results:

 ©Copyright PlanetJ Corporation 2011

Replacement Libraries
What is Replacement Library Support

Replacement libraries can be very beneficial when you have multiple libraries that contain
the same tables with similar sets of data. A primary example would be test data versus
production data. Sometimes, different users have their own libraries, all containing the
same files (tables). When a SQL is run, WOW checks to see if there has been a replacement
library specified for the library the SQL is about to be run against. If so, the original library
in the SQL is switched with a new replacement library.

For Example:

Let’s say there is a replacement library defined to replace LIBRARY1 with TESTLIBRARY1.
In addition, we have an SQL statement set to query LIBRARY1 (SELECT * FROM
LIBRARY1.TABLE1). With the replacement library defined, the final SQL that is run will
actually be SELECT * FROM TESTLIBRARY1.TABLE1. Underneath the covers WOW switches
out replacement libraries before executing the SQL

 ©Copyright PlanetJ Corporation 2011

Four Ways to Implement Replacement Library Support

WOW Based

WOW based - these replacement libraries take affect for any SQL that is run within the
current running WOW instance.

To configure, add a servlet initialization parameter called PJ_REPLACEMENT_LIBRARIES
(similar to all the other WOW initialization parameters). Servlets that can be accessed
by the public are defined in the web application's web.xml file. In this file, you can also
define initialization parameters for the servlet. These are parameters that may be used
by the servlet when it is initialized. The format for each key value pair is <library to be
replaced> = <replacement library>, etc.

For Example:

<init-param id="WOW_Replacement_Libraries">

<param-name>PJ_REPLACEMENT_LIBRARIES</param-name>

<param-value>LIBRARY1=REPLACEMENTLIBRARY32, LIBRARY3=REPLACEMENTLIBRARY2</

param-value>

</init-param>

Application Based

Application based - these replacement libraries take affect for any SQL that is run within the
current application.

To configure, add a "Config" property group to the application's properties. Edit the
application. Add the Config property group in the properties text area. The format for
the library replacement sting value is that same as the other library replacement support
implementations <library to replace>=<replacement library>, etc.

For Example:

Config { replacement libraries:

LIBRARY1=TESTLIBRARY4,LIBRARY2=REPLACEMENTLIBRARY31; }

User Based

User based - these replacement libraries take affect for any SQL that is run by current
signed in user (for any application the user signs into).

User based replacement libraries take a little more work to configure but can be very useful
when dealing with multiple users who have different libraries with similar tables. There are
just a couple steps needed to configure user replacement libraries.

1. The SQLOperation used to sign-on the application should contain a column that is
to be used for replacement libraries. The format for these column values should be
the same format as other library replacement support implementations <library to
replace>=<replacement library>, etc.

2. The field descriptor for the "replacement libraries" column from the sign-on needs to
have a usage ID set to denote that it is a replacement library field. The usage ID to

 ©Copyright PlanetJ Corporation 2011

denote a replacement library field is -165.

For Example:

Let's say that we have a users file containing the user ID, password, and replacement
libraries column. In this file there are two records with the following values:
Record 1
User Id: USER1
Password: PASSWORD
Replacement Libraries: LIBRARY1=LIBRARY4
Record 2
User Id: USER2
Password: PASSWORD
Replacement Libraries: LIBRARY1=LIBRARY3, LIBRARY6=REPLACEMENTLIBRARY2

The field descriptor for "replacement libraries" in this file is set with a usage id of -165.

When USER1 signs in and runs any SQL against LIBRARY1, the actual SQL is run against
LIBRARY4. On the other hand, if USER2 signs into the same application, any SQL they run
against LIBRARY1 will be actually against LIBRARY3

URL Based

URL based - these replacement libraries take affect on any SQL that is run for the current
user's environment only. Once the browser window is closed, the replacement libraries are
no longer used.

To configure, add a request parameter on the URL call to the application when initially
starting the application. This will set and remember the specified replacement libraries for
the duration of the use of the application within the current browser session. The format for
the library replacement string value is the same as the other library replacement support
implementations <library to replace>=<replacement library>, etc. The parameter
name for the URL call is '_pj_replace_libs' see below for an example.

For Example:

The following URL would open application with the ID of 1 and use the specified replacement
libraries when running SQLs within that application for any user:
http://www.planetjavainc.com/wow63/runApp?

id=1&_pj_replace_libs=LIBRARY1=TESTLIBRARY3,LIBRARY5=REPLACEMENTLIBRARY1

 ©Copyright PlanetJ Corporation 2011

Replacement Library Implementation Precedence

If a replacement library is specified on the URL, it will override any other replacement
library setting for that library. If specified as a user property, it will override application and
WOW global replacement libraries. And finally, application replacement libraries will override
WOW global specified replacement libraries.

For Example:

Let's say the application was run with a URL parameter
_pj_replace_libs=LIBRARY1=REPLACEMENTLIBRARY2. In addition, we'll say that there
is a replacement library specified on the application being run. (Config {replacement
libraries: LIBRARY1=REPLACEMENTLIBRARY4 ;}).

When an SQL is run, REPLACEMENTTABLE2 would be used because URL replacement
libraries take precedence over application replacement libraries.

 ©Copyright PlanetJ Corporation 2011

Please click here, WOW Builders Guide continues.

 ©Copyright PlanetJ Corporation 2011

http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_42ffm853c7

