
WOW Builders Guide p.2

WOW Builders Guide p .2
Tabs

Creating Tab Operations
Using Tabs
Tab Configuration

Default Tabs
Tab Fields
Tabs Per Line
Automatic Tab View
Allowing Tab Display
Empty Tab Results
Changing Tab Field Order
Hiding Search Parameters

Further Tab Customization
Stored Procedures

Calling Basic Stored Procedures
Passing Parameters to Stored Procedures
Inserting , Updating , and Deleting

Running Your Applications
Running SQL Queries and Operations
Running WOW Applications by URL

Running Applications in Application Libraries
Directly Executing Operations
Passing Parameters

WOW Security Protocols
Securing Applications

Local Users Only
Local Users Only or Operating System Profile
Operating System Profile
Personal Connection Pool
Operating System Profile Plus Operation

Steps for configuring Operating System Plus Operation Authentication
HTTP Referrer
SQL Operation
Unsecured
User List Authentication Operation
LDAP [Minimum Version : WOW 7.0]

Steps for configuring LDAP Authentication
1) Create a Referrer Operation :
2) Configure the Application :

Testing Without SSL :
Enabling SSL :
Restricting Group Access to an Application

Configure Group Search Properties
Add Group Properties

LDAP {} Property Group :

LDAP Plus Operation [Minimum Version : WOW 7.0]
Steps for configuring LDAP Plus Operation Authentication

User Groups [Minimum Version : WOW 7.0]
Securing Operations
Optional Sign On
Table Authorization
Securing Fields and Operations with User Authorization Operations

Overview
User Authorization List
User Authorization Operation
User Group Authorization List
User Group Authorization Operation
Field Level Authorization
Assigning an Authorization Operation to a Field
Assigning Authorization Operation to an SQL Operation

Deploying Applications
WOW Utilities

Users
Themes

Dynamic Themes with URL Parameter
Keyed Values

Interfacing WOW with Excel
Connecting WOW to an Excel File

Creating system DSN (Windows Only)
Pointing to desired Excel worksheet
Connecting WOW to created DSN (screenshot below)
Syntax of SQL select , update statement
SQL select statement syntax

Basic SQL Queries Using the SELECT Statement
Other Queries Using the SELECT Statement
Using a WHERE clause with the SELECT statement

SQL update statement syntax
Basic SQL Queries Using the UPDATE Command
Using a WHERE clause with the UPDATE statement

Creating Reports and Graphs with WOW and Excel
WOW Setup for Excel Web Query
Creating and Updating Excel Tables from WOW Web Data

Steps to create a web query
Setting up a New Web Query in Excel 2002
Setting up a New Web Query in Excel 2000 or earlier

Integrating WOW with Existing Excel Files
Setting WOW Operations to use Existing Excel Templates
Creating Reports from Data Imported from WOW into Excel
Restrictions

Utilizing Existing RPG Applications
Calling an RPG Program That Returns a Result Set

Add Code to Return a Result Set
Defining the Stored Procedure
Defining the WOW Operation
More Than One User Running the Operation at the Same Time

Calling an RPG Program That Returns a MODS (Array) in RPG Free
Add Code to Return an Array
Defining the Stored Procedure

Defining the WOW Operation
Calling an RPG Program That Returns a MODS (Array) in RPG IV

Add Code to Return an Array
Defining the Stored Procedure
Defining the WOW Operation

Calling an RPG Program That Returns Parameters
Advanced Development Techniques

Multi Value Reference Fields : [PRO]
Using the ReferenceField :
Considerations

WOW Performance
WOW ' s Built In High Performance Cache
Connection Properties
Controlling the Number of Records Returned
Controlling the Number of Fields Read
Optimizing SQL Performance for AS 400 (iSeries)

Compare SQL Performance Against Non - WOW Methods
Using STRDBG
Using iSeries Navigator (STRDBMON)
Controlling How the Data is Accessed

Tomcat Server Performance
SQL Fragments [PRO]

Actions / Events [PRO]
Action

Creating an Action
Entry Information :
Operation Inheritance :
Action / Event Execution Information :
Action Location (for Row action):

Action Location (for Row Collection action):
Action Properties :

Action Messages :
Authorization :
Implementing the Drop Down Location :

Event
Creating an Event

Entry Information :
Event Scope :
Table That Triggers Event :
Action / Event Execution Information :

Example Uses :
Adding Action to save a copy of a single Row or Table Results :
Adding Event to automatically save changes to WOW Operations :
Adding Action to Run 2 nd Operation That Remembers Rows Selected

Create 1 st Operation :
Set Key Fields to Global :
Create 2 nd Operation :
Create Action on 1 st operation to Run 2 nd Operation :

Troubleshooting and Debugging WOW
My iSeries DB 2 files are locked by WOW which is affecting my saves and other
programs !
WOW is unable to connect to the IBM iSeries Metadata Server because of restricted
ports

Change User Name and Password of WOW for new metadata system
Configuring Logging (Log 4 j)

Log 4 J Configurations
WOW Log File (output . log)

Running a SQL Statement with Period in the name of a Database Table
When Running WOW off of a Linux or Unix machine and with MySQL , some
operations don ’ t work
When creating a row , the Current Date - CURRENT returns the wrong date
Changing Database Tables and Views :

WOW Administration and Support
Backing Up WOW Metadata

Backing Up WOW Metadata from AS /400
Backing Up WOW Application Code
Backing Up WOW Metadata Using DB 2 on Windows

Disaster Recovery
Version Control

Web Resources (Java , JSPs , HTML , etc)
Metadata

Web Application Server Information
Getting Support for WOW
WOW Copyright Information

Tabs
One of the options provided by WOW is to display the results of an operation in a tabbed
layout. This layout is typically used where you have one primary operation, and multiple
secondary operations related to the primary operation. For example, your primary operation
might be to look up a customer, and your secondary operations might allow you to view
that customer's history, current charges, and account options. While you are running the
secondary operations, you still want to be able to view the results of your primary operation
(e.g. the current customer resulting from your search).

Creating Tab Operations

This section will describe how to configure your operations to use a tabbed interface, as
shown above. The first step is to determine what your primary operation (also known as the
"tab parent operation") will be. In our example, this is the query which looks up a customer
based on a name search. The operation type of your tab parent operation should be set to
"Tabbed Operation":

Once the tab parent has been defined, the next step is to create your secondary operations
(also known as the "tab data operations"). Creating a tab data operation should be done
exactly like creating an associated operation and associating it with the results of the tab
parent operation. That process is summarized below:

■ Each tab data operation should be an association operation type (such as 1-to-Many
Association or 1-to-1 Association).

■ The tab data operations can use the double question mark notation to refer to fields in
the result of the tab parent operation.

Here is the tab data operation:

■ Each tab data operation should be listed as the associated operation on a field
descriptor of a result field of the tab parent operation.

There must be one such field (with an associated tab data operation) for every tab. The
external name of the field will be the name of the tab as it is displayed to the user. It does
not matter whether the field is a derived field or a physical field; what's important is that
the field be selected as part of the tab parent operation, and that the field is listed in the

detail display columns (if the detail display columns are left blank then all fields are
displayed by default, so not specifying detail display columns will work as well).

So in summary, the operation type of the tab parent operation must be "Tabbed Operation,"
and the tab data operations are each associated operations which are associated with a
particular field of the tab parent.

Using Tabs

When using tabs in WOW, before the tab layout is displayed there must be a single tab
parent row. What this means is that, if the tab parent operation is run and results in
multiple rows, the tab layout is not displayed until the user has narrowed the results down
to a single row. This can be done either by altering the search criteria so that a single row is
returned, or by clicking on the detail view of one of the result rows.

Tab Configuration

The Tabs property group allows you to configure tabs in several ways:

Default Tabs

Once a single tab parent row has been selected, WOW will display all the tabs associated
with that tab parent; however it will not automatically select a tab for the user. If you want
WOW to automatically select one of the tabs by default, you can specify this in the Tabs
properties group:
Tabs {
defaultTab: C_HISTORY;

}

The above property group instructs WOW to initially display the C_HISTORY tab. In our
example, this is the tab labeled "History." C_HISTORY is the internal name of the derived
field associated with the operation for retrieving the customer's history.
The defaultTab property is specified in the tabbed operation (not any of the tab data
operations).

Tab Fields

By default, any fields in the details of the tabbed operation which have associated
operations are rendered as tabs. However, in some cases you may have fields with
associated operations which are not tabs. You can use
the tabFieldsExclude and tabFields properties to control which fields are displayed as tabs:
Tabs {

defaultTab: C_HISTORY;
tabFields: FIELD1, FIELD2;

}

In the above property group, fields FIELD1 and FIELD2 will be the only fields rendered as
tabs, no matter how many other fields have association operations.
Tabs {
defaultTab: C_HISTORY;
tabFieldsExclude: FIELD_A, FIELD_B;

}

In the above property group, fields FIELD_A and FIELD_B will not be displayed as tabs,
even if the have associated operations. The tabFieldsExclude and tabFields properties are
always specified in the tabbed operation (not the tab data operations).

Tabs Per Line

If an operation has a large number of tabs, WOW may need to use multiple lines on the
screen to display all of the tabs:

By default, WOW will display a maximum of 10 tabs on the same line. You can change the
maximum number of tabs on a single line with the maxTabsPerLine property:
Tabs {
maxTabsPerLine: 7;

}

The maxTabsPerLine property is specified in the tabbed operation, not the tab data
operations.

Automatic Tab View

As discussed in the previous section, when you run a tabbed operation you will only see the
tabbed layout when viewing a single row from the results. Normally, when your query
returns a single row WOW will take you directly to the tabbed view for that row instead of

displaying a list view containing a single row. However, this behavior can be overridden
setting theautomaticTabView property to false:
Tabs {
defaultTab: C_HISTORY;
maxTabsPerLine: 7;
automaticTabView: false;

}

In this case, after running a tabbed operation, the results will always be displayed in a list
view, even if there is only a single row to display. You can still click on the View Details link
(the magnifying glass) for any row to view that row in a tabbed view.
The automaticTabView property is specified in the tabbed operation, not the tab data
operations.

Allowing Tab Display

Sometimes, you may want the results of an operation to be displayed inside of a tab, but
the details of that operation to be displayed outside of a tab. Using the allowInTab property
you can specify exactly when an operation is allowed to be displayed in a tab:
Tabs {
allowInTab: results;

}

There are 4 settings for this property:
■ always – Displays both the results and details in a tab.
■ details – Only the details (not the results) should be displayed in a tab.
■ never – Neither the details nor results should be displayed in a tab.
■ results – Only the results (not the details) should be displayed in a tab.

Unlike all other properties in the Tabs property group, the allowInTab property must be
specified in the tab data operation, and not the tabbed operation.

Empty Tab Results

When a tabbed operation is run and there are no results, WOW can either display an empty
table of the results, or can leave the results section of the screen bHere is alank.

Here is a tabbed search example that hides empty results:

The hideWhenEmpty property controls which method WOW uses to display empty tab
results. When hideWhenEmpty is true, WOW will not display any results; if it is false then an
empty Row Collection will be displayed. If the hideWhenEmpty property is not specified, it
defaults to the same value as the automaticTabView property.

You can also define a message to display to the user when there are no results using
the emptyMessage property.
Tabs {
hideWhenEmpty: true;
emptyMessage: There is no information available for the month/year that you have
selected;

}

Changing Tab Field Order

On each field descriptor there is a display order. Fields with the lowest display order will get
listed first.

The exact behavior is:
1. Find the field with the lowest display order.
2. Put that field and any other fields within the same field set together then get the next

lowest field set and display those.

NOTE: In the FD Manager, there is an operation on the left called "display properties" that
will allow you to set the display order and field set from an updateable table so you do not
have to go into each FD one at a time.

Hiding Search Parameters

There are times when you may want the search parameters for the Tab Parent operation to
only be displayed long enough to perform the search successfully. Using
thealwaysShowSearch property, you can specify whether the search parameters should
continue to be displayed (default behavior), or if they should be removed to provide more
space for displaying the results from the Tab Parent operation:
Tabs {
alwaysShowSearch: false;

}

There are 2 settings for this property:
■ true – Always show the search parameters in the Tab Parent operation. This is the

default value if this property is omitted.
■ false – Once the Tab Parent operation successfully shows a record (row), hide the

search parameters.

The alwaysShowSearch property is specified in the tabbed operation, not the tab data
operation.

Further Tab Customization

[PRO] This section describes advanced techniques for customizing the layout and
appearance of tabs, and is recommended for JSP programmers only.
WOW uses 5 JSP's to display a typical tabbed screen:

Here is the same tab screen, overlayed with different colors to distinguish the different
JSP's:

By replacing one or more of the WOW default JSP's with your own custom JSP's you can
completely control the manner in which tabs are displayed to the user. Each of the 5
different JSP's are discussed below:

■ Parameters JSP (yellow overlay) – This JSP displays the parameters of the tabbed
operation to the user. If you want to use a JSP other than the WOW default, specify
your JSP in the "Parameters JSP" field of the tabbed operation.

■ Results JSP (pink overlay) – This JSP displays the results of the tab data operation.
If you want to use a JSP other than the WOW default, specify your JSP in the "JSP
File" field of the tab data operation.

■ Tab Parent JSP (blue overlay) – This JSP displays the contents of the tab parent
row. If you want to use a JSP other than the WOW default, specify your JSP in the
Tabs property group of the tabbed operation.

■ Tab Headings JSP (green overlay) – This JSP displays the tab bar and labels. If
you want to use a JSP other than the WOW default, specify your JSP in the Tabs
property group of the tabbed operation:Tabs {

defaultTab: C_HISTORY;
tabParentJSP: /jsp/myTabParent.jsp;
tabHeadingsJSP: /jsp/myTabHeadings.jsp;}

■ Tab Layout JSP (entire screen) – This JSP is responsible for positioning the four
other JSP's. Those four JSP's are all contained within the tab layout JSP. If you want
to use a JSP other than the WOW default, specify your tab layout JSP in the "Details
JSP" field in the tabbed operation.

Stored Procedures
A stored procedure consists of one or more SQL statements that have been precompiled on
a database system. All of the SQL examples in the above chapters are dynamic SQL
statements – no compilation takes place until they are run. For this reason, stored
procedures tend to perform better than dynamic SQL. This chapter will discuss how to call
stored procedures and display their results using WOW. Creating stored procedures is not
covered in this guide. For more information on creating stored procedures check your
database documentation.

Calling Basic Stored Procedures

The SQL for calling a stored procedure named MYSP located in the PLANETJTMP library is:
CALL PLANETJTMP.MYSP()
To call this stored procedure and display the results it returns in WOW, simply place type
this SQL in the code section of an operation.

NOTE: When calling MS SQL SERVER stored procedures, you may need to place the stored
procedure call within {}. For example: {call mySqlServer.myStoredProc() }. Consult the
database documentation for details for each specific database being used.

When you run the operation, the results are displayed like a normal select statement:

By default, when the results from a stored procedure call are displayed, they do not make
use of any field descriptors you have created. This is because the names of the actual tables
from which the results are read are not present in the SQL code that is entered in WOW;

the table names are contained inside the stored procedure code, which WOW does not have
access to.

In order to have your results use the field descriptors you have created, you must add a
StoredProcedure property group to the properties of the operation which calls the stored
procedure. In the tables property of the StoredProcedure property group, you should list the
names of the tables which are used in the query.

NOTE: This property group goes in the Properties section of the operation, NOT the
operation code!
For example:
StoredProcedure {
tables; planetj.customer, planetj.balancedta;

}

Once you do that, your results will then use the appropriate field descriptors when they are
displayed:

Passing Parameters to Stored Procedures

Many stored procedures have input parameters whose values are used at runtime to
execute a query. To call a stored procedure and prompt the user at runtime to supply the
values for its parameters, you must identify which field descriptors to use when generating
the input prompts. For example, in the screenshot below the stored procedure is being
passed two parameters, the first will use field descriptor 1135 (this is the id of the desired
FD) to display the prompt to the user and the second will use field descriptor 1139.

NOTE: You cannot use a single question mark as a parameter in a stored procedure as you
can with other SQL statements.

Inserting, Updating, and Deleting

Some stored procedures do not return rows from the database for display; instead they
alter one or more database tables. To identify these types of stored procedures, you should
specify a value of false for the rowCollection property of the StoredProcedure property
group.
StoredProcedure {
tables: planetj.customer, planetj.balance;
rowCollection: false;

}

This lets WOW know that it should not attempt to display a collection of rows read from the
database as a result of calling the stored procedure.

Running Your Applications

Running SQL Queries and Operations

After creating the different operations as shown in the above chapters it’s now time to run
the application. This section will assume that you have entered your user ID and password
and successfully logged on to WOW. The screen shot below is what the screen should look
like after a successful login. (You may have fewer applications, and they will be named
differently than the ones shown in the screen shot.)

After you have successfully logged on with your user ID and password, select the
application you would like to run. Then click on the Step 4 button 'Run!' on the left side of
the screen. Alternatively, you can click the Preview Application link next to the application
you wish to run. In either case, a new browser window will open up and execute your
application. By default, your operations can be found in their respective display groups
under the drop down menu bar near the top of the window.

Each one of these links corresponds to a different operation. Your application may have
more or fewer operations listed. Notice the different Display Groups: “SQL”, “Stored
Procedures”, “Exe”; these different Display Groups were created by changing the "Display
Group" from "default" to a more descriptive name.

Clicking on a link will execute that link’s operation. Operations which query the database will
display their results directly on the screen. If your operations use runtime prompting, the
user will be prompted for the required values when the operation’s link is clicked. Below is a
screen shot of what a runtime prompt may look like:

Running WOW Applications by URL

To run a WOW application directly, without going through the WOW builder you must first
know the ID of the application you wish to run. The application ID is located in the second-
to-last column on the "Applications" screen. For example, the applications in the screen shot
below have IDs of 0 and 1:

To run an individual application (the 'Core Temp' application in this example) use the URL
shown below replacing 'planetjavainc' with the URL of WOW on your machine, and 0 with
the ID of the application you want to run:
http://www.planetjavainc.com/wow/runApp?id=269
This is the URL of WOW followed by "runApp?id=0". Make sure to capitalize the word App
but keep the word run in lowercase. The screen shot below shows the web browser after the
above URL has been entered in.

The URL does not have to be directly typed into a browser; you could also create a link to it
from another web page that users would click on to run the application. If your application
is in an application library you will need to append that onto the URL as well, as described
below:

Running Applications in Application Libraries

If you want to run an application which is in an application library other than the default
one, you must also specify the application library on the URL. You first take the application's
URL as defined above, and append the text:
&_pj_lib=<APPLIB>

where <APPLIB> is the name of the application library containing the application. For
example, if we wanted to run the application with ID 269 in the application library TEMPLIB,
the URL would be:
http://www.planetjavainc.com/wow/runApp?id=269&_pj_lib=TEMPLIB
Of course, you will have to replace planetjavainc with the URL of your web server. Note that
the above URL does not contain any spaces – just underscores. Keep in mind that it is
possible for two different applications to have the same application ID if they are in different
application libraries.

Directly Executing Operations

The normal way to execute an operation created with WOW is through an application. The
user clicks a link, taking them to the main page of an application and the available
operations for that application are then available from a left-hand TOC or a drop-down
menu (default). However, it is also possible to directly execute an operation without going
to any intermediate pages. To do this, you must first know the ID of the operation you are
going to execute. You can find an operation's ID by choosing to edit that operation, and
then scrolling to the 'Internal' section at the bottom of the page:

Once you know an operation's ID, you can directly execute that operation by going to a URL
similar to this one:
http://www.planetjavainc.com/wow/runApp?opid=3
The above URLs would directly execute operation 3 on the PlanetJ website. You should
replace "3" with the ID of the operation you want to directly execute, and
"www.planetjavainc.com" with the URL of your server.

NOTE: If you choose to directly execute an operation that is part of a secured application
you will have to sign on to that application before the operation is executed, unless you
have already signed onto that application.

Passing Parameters

You can also pass parameters to operations which are directly executed in one of two ways:
by name or by index. For example, say the operation with an ID of 10 has this code: SELECT
* FROM PJDATA.CUSTOMER WHERE NAME = ? and BALANCE = ?. To directly execute this
operation looking for customers whose name is John and whose balance is 400, you could
specify the parameters by name on the URL like this:
http://www.planetjavainc.com/runApp?opid=10&BALANCE=400&NAME=John
You can simply list out the parameters using the "name=value" format, separated by
ampersands.
Alternatively, you could specify the parameters by index like this:
http://www.planetjavainc.com/runApp?opid=10&_parm1=John&_parm2=400

NOTE: There are no spaces in the above URL, just underscores.
When specifying parameters by index you list them on the URL using the "_parm1=value1"
format, separated by ampersands (the first parameter has an index of 1). Specifying
parameters by index can be useful when two parameters in your operation have the same
name (e.g. SELECT * FROM PJDATA.CUSTOMER WHERE BALANCE > ? AND BALANCE < ?). If
you specify parameters by name, there is no way to give these two parameters (both
named BALANCE) different values.

WOW Security Protocols

Securing Applications

WOW contains multiple ways of securing applications, shown in the drop down below. When
creating or editing an application, you can choose which type of security it uses. All of the
security options are described below.

Local Users Only

When a user attempts to use an application, WOW examines the IP address of that user. If
the IP indicates that the user is on the local network (i.e. not connecting via the Internet)
the user is allowed to use the application. Otherwise the user is locked out and cannot use
the application.

Local Users Only or Operating System Profile

This sign on option allows local users (as described above) to access the application without
entering a user ID or password. Non-local users must enter a user ID and password
recognized by the underlying operating system (or database system) before using the
application.

Operating System Profile

This type of sign on can be useful to validate a user against an operating system (or more
specifically, a database system). This feature prompts the user for a user ID and password
that it validates against the database. Users with a valid database sign on will be allowed to
use your application – those who cannot sign onto the database will be locked out of the
application as well.

Many organizations choose to use Operating System Profile to secure their applications.
 This presents the benefit that you do not have to create a whole new table to manage
users and their credentials; you can simply utilize your database’s existing user profiles.
 However, in some cases, you may want to also secure specific operations or fields within
your application. In this case, you can use Operating System Profile to secure the
application and then SQL Authorization operations to secure individual operations and fields.
See chapter 19.5 for more information on using SQL Authorization operations.

NOTE: When WOW performs Operating System authentication, it stores the Userid of a
successful sign-on in the user sign-on row in the session. This userid can now be accessed
from any WOW SQL statements using the following row parameter: ???USERID

For example:
SELECT * FROM library.table WHERE user = ???USERID
This statement would return all records in the specified table that have a “user” value that
matches the “USERID” used to sign into the application.

Personal Connection Pool

The Personal Connection Pool sign on validates a user ID and password against the
database, much like the Operating System Profile sign on. However, when an application
uses the Personal Connection Pool sign on method, all database accesses by that application
will be tied to the profile of whichever user has signed onto the application and requested
that database access. All other sign on methods use a shared pool of database connections
when accessing the database – this can significantly improve performance but means that
the database cannot determine which particular user is accessing it, only which application
is doing the access. This sign on type should be selected when the database needs to know
which user is accessing it.

Operating System Profile Plus Operation

The Operating System Profile Plus Operation sign on is almost identical to an Operating
System Profile sign on, with the exception that after the user is authenticated against the
operating system or database, an SQL operation is run to retrieve a property Row.

Steps for configuring Operating System Plus Operation Authentication

1) Within the application, create an operation of type Authentication. Set the Operation
Code to the SQL that will be used to retrieve the desired properties Row. Use a built-in
parameter such as ???USERID (the user ID used to sign onto the application) to filter the
results returned from the operation so they correspond with the user signing on:

2) Edit the application and change the following:
● Sign On Type = Operating System Plus Operation Sign On
● Sign On Operation = the operation from step 1.

HTTP Referrer

You can use the HTTP Referrer sign on to allow only users coming from a certain web page
into your application. This can be useful when combining an existing web site with WOW –
when the user arrives at a WOW application from a page on the existing web application you
may not want to force the user to sign on again. It is possible, though unlikely, that
someone with an understanding of the HTTP protocol could trick WOW into thinking they
came from a particular page.

To use HTTP Referrer sign on, you must first create an operation of type “Referrer
Authorization”. In the operation code list the comma separated URL prefixes of permitted
referrers. For example, if your operation looked like this:

Users coming from the following pages would be granted access to your application:
http :// www . planetjavainc . com
http :// www . planetjavainc . com / wow
http :// www . myownwebpage . com / test
Users coming from http :// www . myownwebpage . com would not be given access.

http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.myownwebpage.com/test
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/wow
http://www.planetjavainc.com/
http://www.planetjavainc.com/
http://www.planetjavainc.com/
http://www.planetjavainc.com/
http://www.planetjavainc.com/
http://www.planetjavainc.com/
http://www.planetjavainc.com/

SQL Operation

This type of authentication allows for a very versatile way to secure the sign-on of an
application. SQL Operation sign on is the most powerful type of application sign on. It
allows for a couple additional features to be used; Securing Operations (as described later in
this chapter) and using user properties as parameters in other operations.

SQL Operation sign on requires that the given application contains an authentication
operation. An authentication operation is a regular SQL Operation that has a different type
(authentication) to denote that it should be used for sign on authentication. This allows any
number of values to be retrieved as user properties, as well as allowing authentication
against any data in the database. See the two examples below for more details.

SQL Operation sign on example 1:
To properly setup an Application with a Sign On Type of SQL Operation, the user must
specify this setting while editing an Application. Once this is set, the user creates the SQL
Operation that will be used to authenticate the Sign On. To do this, create an SQL
Operation for the Application and set the required property of Operation Type to
Authentication.

The user must specify the SQL Query that contains the field or fields to be authenticated
against. Save this information with the Operation and run the Application. A screen should
appear that presents TextFields for the fields specified in the query and a “Login” button.

The order of the fields presented on the screen is determined by the order of the fields in
the SQL Operation. In order to provide nicer values for the labels on the TextFields, be sure
to specify the external name in the Field Data for that file.

When the login button is pressed, the authentication operation is run using the values the
user supplied. If the operation returns any rows from the database, the sign on is
successful. If no rows are returned, the sign on fails.

SQL Operation sign onexample 2:
This example is the same as example 1, but the SQL is different to give a more clear
explanation of how user properties and sign on fields are generated. In this example, we
will also authentic against the same table as the first example, but we will change our SQL.
This time, we will authenticate against the user name, user password, and last name
columns of the table.

Here is the sign on page:

You’ll notice that this example selects certain fields from the user table. These fields may
then be used by other operations as parameters. For example, the query
SELECT * FROM PLANETJ.CUST_DATA WHERE F_NAME = ???URFIRSTNAME
would select from the CUST_DATA table where the F_NAME field contains the same value as
the URFIRSTNAME field in the current user’s row of the USER table. (See section 10.1 for
more information on user parameters.) In addition, the urseclevel field selected has a
usage id (see Appendix A) set to denote that it’s a security level field. This means that the
application could contain operations that are secured by level and each user signing in
would have a security level (see the next section for more information on security levels).

Multiple Sign On Operations
Most applications which use SQL for signing on do so in a single operation. However, it is
possible to use multiple operations for a single sign on. For example, on the first screen
you may want to have the user enter in his or her ID and check that against the list of
authorized users before presenting the user with a second page for entering in a password.

To configure your application to use two sign on operations (as in the above example) follow
these three steps:

1. Define both of your operations normally. Be sure to set their operation type to
Authentication. This is a screenshot of the first operation (for checking the user’s
name):

This is the second sign on operation (for verifying a user’s password):

Notice that this operation refers to data returned by the first operation with the double
question mark syntax (??USERID). This is necessary because we need to check not only
that the password is valid, but that it is valid for the particular user ID obtained from the
first operation

2. In the second sign on operation, the first sign on operation must be identified as the
parent operation. This lets WOW know that after running the first operation, the sign
on isn’t complete until the second operation is run as well.

3. Finally, the application’s sign on type should be set to SQL Operation, and the primary
(first) sign on operation specified. Now the application is set up to use multiple sign
on operations.

Unsecured

This type of sign on is useful for applications showing public information. It is just as it
says; unsecured, meaning the application does not require any type of authentication in
order to view the application and its operations.

User List Authentication Operation

An application can be secured by creating a User List Authentication Operation which is
defined by a comma separated list of user names and passwords. When the user logs on to
an application with list based security they are prompted for their user name and password.
This is a useful option when the WOW developer wants to quickly implement application
level security for a small group of users without having set up table or user profile based
security.

Here is an example of a user list authentication operation:

The user name and password are separated by a comma. The name password pairs are
separated by a semi-colon.

After the authentication operation has been created it is assigned to the application.

LDAP [Minimum Version: WOW 7.0]

[EE] The LDAP sign on validates a user ID and password against an existing LDAP server.
Using LDAP allows the user ID and password to be centrally located. The user signs in to
the application with their LDAP sign-on (user ID and password). WOW utilizes the LDAP
credentials provided by the user and contacts LDAP to verify authentication. This
authentication option requires that the existing LDAP system be accessible from the WOW
server.

NOTICE: Because each LDAP configuration may be unique, it is not guaranteed that the
default WOW implementation will be compatible with your environment. Custom Java
development may be required that is not part of standard WOW product support.
 Customization can be done by WOW consultants.

Steps for configuring LDAP Authentication

1) Create a Referrer Operation:

To use the LDAP sign on, you must first create an operation of type “Referrer
Authorization”. In the operation code, specify the LDAP connection URL.

You will need to contact your LDAP administrator for the specifics of your LDAP server, but
here is a basic break down of the LDAP connection URL:

ldap://ldapip:636,uid=??USERNAME,ou=people,o=mycompany

● ldap:// - required URL prefix.
● ldapip – the host or ip address of the LDAP service directory
● 636 – the LDAP port to use. Generally port 389 is the default for unsecured (user ID

and password are visible) and port 636 is the default for secured (SSL). Port
unsecured port should only be used for initial testing. Enabling the use of SSL will be
explained later.

● uid=??USERNAME – provides the user ID to the LDAP server. WOW will replace
the ??USERNAME parameter with the user ID specified on the signon screen.

● Base information -Authenticating for individual people (e.g.
"ou=people,o=mycompany")

2) Configure the Application:

Next configure the application to use the LDAP sign on. Change the Sign On Type to “LDAP
Sign On”. Then change Sign On Operation to the LDAP sign on operation (Referer
Authorization) created in the previous step.

Testing Without SSL:

By default, WOW tries to use SSL when authenticating with LDAP. For initial testing, it is
recommended to test without SSL first to ensure that the configuration is correct. To disable
LDAP:

● Use the non-secure port in the LDAP URL, usually 389.
● In the application's properties, include the following:

LDAP{ssl:false;}

Enabling SSL:

To enable the use of SSL for LDAP authentication:

1) Install the required certification files on your WOW server.
● Contact your LDAP administrator and acquire the necessary certificate files needed for

your server.
● Determine the Java location used by Tomcat (if needed, run Monitor Tomcat =>

Configure).
● Copy those certificate files to Java's security folder: ~C:\Program

Files\Java\jre6\lib\security
● Run Window's Command Prompt

● (From the command prompt) change the current directory to correspond to Java's
security folder:

cd “C:\Program Files\Java\jre6\lib\security”
● (From the command prompt) For each certificate file, run the keytool command to

import the file:
“C:\Program Files\Java\jre6/bin/keytool” -import -trustcacerts -alias
certfile1 -file certfile1.crt -keystore ./cacerts -storepass changeit

● (From the command prompt) If more than 1 certificate file, repeat the above step for
each additional file, changing the changing the alias and file parameters.

● Restart Tomcat (application restart will not work).

2) Change the port in the LDAP URL to the SSL port (default is 636).

Restricting Group Access to an Application

You can limit which users can sign into an application by designating a specific LDAP group
or list of groups. To designate specific groups, edit the application. In the application
properties, if the “LDAP” property group does not already exist, you’ll need to add it.

Configure Group Search Properties

First you’ll need to add search configuration properties for groups for your LDAP system
(used to search for/extract groups from the LDAP system). If needed, contact your LDAP
administrator for the correct configuration values:

● groupSearchBase – The search base to use for LDAP groups. E.g.
"ou=people,o=mycompany". This parameter must be specified for group extraction.

● groupKey - The group attribute key. The default is "groupMembership".
● groupOrgUnit - The Group Organizational Unit. E.g. “ou=groups,o= mycompany "

LDAP{ groupSearchBase: ou=people,o=mycompany;
groupKey: groupMembership; groupOrgUnit: ou=groups,o= mycompany;
}

Add Group Properties

Next, to designate the groups to restrict access to the application, add the “groups”
property.

LDAP{ groupSearchBase: ou=people,o=mycompany;
groupKey: groupMembership; groupOrgUnit: ou=groups,o= mycompany;
groups:group1,group2;
}

If more than one group is to have access, separate them with commas. The list of groups a
user belongs to will be cross checked against the list of groups specified for the groups
property above.

LDAP {} Property Group:

The LDAP property group should be specified in the application's properties and allows you
to alter some of the LDAP configuration:

Property Value Description

ssl TRUE | FALSE Should WOW use SSL when
contacting LDAP? The
default is true.

authentication simple | none |
strong

Contact your LDAP
administrator for the correct
setting. The default is
simple.

groupSearchBase search base
string

The search base to use for
LDAP groups. E.g.
"ou=people,o=mycompany".
 This parameter must be
specified for group
extraction.

groupKey group key string The group attribute key.
The default is
"groupMembership".

sqlOperation integer value The ID of the authentication
or SQL operation. Used with
LDAP plus Operation.

groupOrgUnit organizational
unit string

The Group Organizational
Unit. E.g. “ou=groups,o=
mycompany "

groups list of group
names

A list of comma separated
LDAP group names to
restrict access to.

NOTE: When WOW performs LDAP authentication, LDAP user profile information is stored in
the user's sign-on row in their browser session. This information will be referred to later as
the LDAP signon row. These profile attributes can now be accessed from any WOW SQL
statements using a sign-on row parameter (“???” + property-name). For example, if an
LDAP property ID is “MAIL”, then an operation's SQL might look like the following:

SELECT * FROM MYSCHEMA.MYTABLE WHERE emailfld = ???MAIL

Available property field names can be viewed from WOW's user tools (visible when
application launched from WOW builder) by clicking on the “User Info” link.

LDAP Plus Operation[Minimum Version: WOW 7.0]

[EE] The LDAP Plus Operation sign on is almost identical to an LDAP sign on, with the
exception that after the user is authenticated against LDAP, an SQL operation is run to
retrieve a property Row.

Steps for configuring LDAP Plus Operation Authentication

1) Follow the steps defined for LDAP authentication, with the exception that Sign On Type =
LDAP Plus Operation Sign On (step: Configure the Application).

2) Within the LDAP application, create an operation of type Authentication. Set the
Operation Code to the SQL that will be used to retrieve the desired properties Row. Use a
built-in parameter, such as ???USERID (the user ID used to sign onto the application) or
any fields from the LDAP signon row (prefaced with "???", e.g ???USER), to filter the results
returned from the operation so they correspond with the user signing on:

Optionally, the Authentication operation can exist in another application (or application set
to shared, where the application ID = None or -1) or be set to type SQL Operation. In this
case, you will need to use the sqlOperation property to specify the operation ID. For
example, if the operation ID of the Authentication/SQL operation is 1025, then include
the following property in the LDAP property group:
sqlOperation:1025;

User Groups [Minimum Version: WOW 7.0]

[EE] User groups can be used to secure applications, operations and fields. A user can be
assigned to one or more groups, and the groups represent a certain level of authorization.
WOW supports the follow types of User Groups:

● LDAP Signon - When using an LDAP type signon, all groups a user belongs to are
automatically gathered when the user signs in and the LDAP server is contacted for
signin authorization. That group list is then retained as part of the user's session and
can then later be used by WOW to see if the user is authorized to an application,
operation or field. See LDAP [Minimum Version : WOW 7.0] for more details on
configuring an LDAP signon for groups.

● SQL Operation Signon - When defining an SQL Operation Signon, if one of the fields
retrieved by the operation has a usage ID = -135, the string value will be parsed
(comma separated) for one or more user group names. That group name list is
retained as part of the user's session and can then later be used by WOW to see if the
user is authorized to an application, operation or field.

Once you have your application configured to keep track of a user's groups, follow the
instructions below for User Group Authorization List.

http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9
http://docs.google.com/Doc?docid=0ARFewDH9gA5eZGR6bTN4djVfNDFmM25qOXBjOA&hl=en#LDAP_Minimum_Version_WOW_7_0_9

Securing Operations

[PRO] WOW has a powerful security feature that can be set from within each individual
operation. The security measures within the operations are used to allow only certain users
with a specific security level to view operations. Every user (anonymous or otherwise) by
default has a security level of zero, unless otherwise specified. WOW uses a simple number
scheme to control which users can view certain operations within a specific WOW
Application. When an operation is set to a security level of 0, all users will have access to
that operation. When an operation is set to another security level, only users with security
level equal to or higher than the operation’s security level will have access to that
operation. An operation’s security level can be set in that operation’s detail screen. The
Security options are found under the Administration section as show in the screen shot
below:

Security Settings
Security Type: The Security type is where you set the initial security level. Security Type
has two available settings. Level Security is the most powerful of the settings. It uses a
numbering scheme to allow access to specific operations.

Level Security – This is the most the most powerful of the security settings that are
available within WOW. When Security Type is set to Level Security it allows the
application builder to give Operations a specific number which determines which users
have access to that Operation.
Operation Security – This security setting allows a very versatile way to secure
operations. When Security Type is set to Operation Security, it allows the application
builder the flexibility to utilize any file. The Operation Security setting requires that the
Execute Authority Operation be set to a User Authorization operation.
See section Securing Fields and Operations with User Authorization Operations for more
details.
Unsecured – An unsecured Operation has no security measures. This means that
anyone who uses WOW can use that Operation. This is similar to a security level of 0
when using the Level Security Feature. An unsecured SQL Operation can be viewed by
anyone with access to that application.

Secured Operation Example
This example is can also be found under the “Level Based Security” application provided
with the sample applications. This example assumes an application has already been
created and has its sign on type set to SQL Operation.

First, we need to create an Authentication Operation to use for authenticating users. Follow
steps provided previous in the chapter on how to create an authentication operation. For
this example, the Authentication’s Operation SQL will be:
select seclevel from planetj.user where email = ? and password = ?

This sign on Operation will validate the email and password given by a user and if valid,
store that user’s urseclevel Field’s value as a user property. Listed below are some of the
Fields and values that can be found in the planetj.user table. There are actually more
columns than these, but we only need three for this example.

URNAME URPASSWORD URSECLEVEL
joepublic j949 0

peterpoweruser trustno1 6

You’ll notice that Joe Public has a security level of 0 and Peter Poweruser has a security
level of 6. This value will be stored as a user property when each of them sign in to the
application.
Next, we create another operation, this time just a regular SQL Operation. Its operation
code can be set to:
select * from planetj.emp

This operation should also be secured. To do this, set the operation’s security type to Level
Security, along with a level of 2.

Now when the two users sign on, neither will be able to see this operation. Peter Poweruser
has a security level of 6, so why can’t he see it? There’s one more step that needs to be
done. The SecLevel Field is being stored as a user property, but in order for the security
feature utilizing Level Based Security to pick it up, the SecLevel’s FieldDescriptor needs to
have its usage id set to -160. This usage id value denotes a Security Level Field.

Now when Peter Poweruser signs in, he will be allowed to see the Operation for view
employees, where as Joe Public still cannot see it because his security level field value is not
greater than or equal to the Operation’s security level.

Optional Sign On

In some scenarios, you may have an application with certain operations that anyone can
use and other operations to which only certain users have access. In this case, you may
want to let users access your application without signing on, as long as they limit
themselves to the operations available to everyone. To allow users to access the application
without signing on, but still allow them to sign on if they want to, check the “Optional Sign
On” checkbox in the application details screen:

When a user starts an application whose sign on is optional, they are presented with a
screen similar to this one (the operations will vary depending on the application):

There is a sign on area in the top left of the screen which the user can use if he or she
wants to sign on. If the user does not sign on, then that user has a security level of 0, and
only has access to operations which also have a security level of 0. Once signed on, the
user has a security level determined by the userid used to sign on, and will have access to
all operations with a security level equal to or less than the user’s security level.

NOTE: Optional Sign On is only supported when the sign on type is SQL Operation.

Table Authorization

[EE] WOW allows you to control access to the tables used by your application. By default all
users are permitted to access a table in any way your operations allow. In order to restrict
the ways in which users are allowed to access a table you create a user authorization
operation and then specify that operation in a table descriptor, as described below.

Using Table Authorization
In this example, we will restrict the users who are allowed to delete from our table. It is also
possible to restrict the users who may read, update, insert into, or alter a particular table.
Here is the result of selecting rows from our table, before we restrict deletes.

The first step is to create a user authorization operation. This operation will return a list of
the users who have authority to delete from the table. (User authorization operations are
covered in more detail earlier in this chapter.) This is what our user authorization operation
looks like:

The SQL in the operation may use the "??TABLE_NAME" parameter to refer to the table
whose authority is being checked. This allows a single user authorization operation to be
used by multiple tables.

This user authorization operation must now be specified in the table's table descriptor. To
locate the table descriptor, open up Field Descriptor Manager, and go to the FDs for that
table. (See the Field Descriptors Chapter for more information on Field Descriptor

Manager.) The table descriptor will have the same name as the table, except it will be
prefixed with a tilde (~). In our example, we are working with the CUSTOMER table, so the
table descriptor is named "~CUSTOMER".

Edit the table descriptor, and in the Authorization Settings section, look for the Delete
Authorization Operation field. Set the value of this field to the user authorization operation
created earlier. (To restrict reads, updates, inserts, or alters set the authorization operation
in the appropriate field.)

Now, any operation which attempts to access the CUSTOMER table will prevent
unauthorized users from deleting rows from the table. Note that the table descriptor is
associated with a particular connection alias, so the security restrictions will only apply
when the table is accessed using this connection.

If signing on as a user without authority to delete from the table, select rows from the table
will not be displayed.

Securing Fields and Operations with User Authorization
Operations

Overview

[PRO] User authorization operations give the developer the ability to restrict a user from
viewing and/or editing any fields or operations based on sign on.
Four types of Authorization Operations are available.

● User Authorization List Operation
● User Authorization (SQL) Operation
● User Group Authorization List Operation
● User Group Authorization (SQL) Operation

Authorization Operations should only be referenced by fields/operations included
within secure applications
The field/operation being secured must exist within a secure application that requires a sign
on.
If the user has not signed on to the application or the application does not require a sign on
then authorization will fail and the user will not have access to the field/operation.

User Authorization List

This type of operation holds a static list of user names that is defined when the
authorization operation is created.
The list of user names cannot be changed except by changing the authorization operation
itself.
This is authorization operation is useful when a small number of users will have restricted
access to certain fields and/or operations.

Creating User Authorization List

This is the screen where the application builder creates the User Authorization List
Operation. Each relevant setting is described below.

Basic
Operation Type - User Authorization List
Operation Code - A static list of comma separated names

User Authorization Operation

This type of operation uses SQL to retrieve a list of users (user ID's) that are authorized to
use an operation or field. The list of user names is dynamically generated, which provides
greater flexibility.

Creating User Authorization Operation
This is the screen where the wow builder creates the User Authorization Operation. Each
relevant setting is described below:

Basic
Operation Type - User Authorization Operation
Operation Code - SQL used to retrieve a list of the desired user names (user ID's).

User Group Authorization List

This type of operation holds a static list of group names that are defined when the
authorization operation is created.
The list of group names cannot be changed except by changing the authorization operation
itself.
This authorization operation is useful when a small number of user groups will have
restricted access to certain fields and/or operations.

Creating User Group Authorization List

This is the screen where the wow builder creates the User group Authorization List
Operation. Each relevant setting is described below.

Basic
Operation Type - User Group Authorization List
Operation Code - A static list of comma separated group names

User Group Authorization Operation

This type of operation uses SQL to retrieve a list of group names that are authorized to use
an operation or field. The list of group names is dynamically generated, which provides
greater flexibility.

Creating User Group Authorization Operation
This is the screen where the wow builder creates the User Group Authorization operation.
Each relevant setting is described below:

Basic
Operation Type - User Group Authorization Operation
Operation Code - SQL used to retrieve a list of the desired group names.

Field Level Authorization

[PRO] Access to a field may be restricted in two ways.
1. Authorization to Read- Authorized users has access to view the field but not

necessarily edit the field.
2. Authorization to Edit- Authorized users has access to edit the field. This applies

only if the field is visible to them.
A field may be secured for Read or Edit by either type of authorization operation.
Both types of access can be used together to provide field security that may be:

● Visible/Editable by a group of users while hidden from another group.
● Visible/Editable by a group of users while Visible/Not Editable to another group.
● Visible/Not Editable by a group of users while Not Visible from another group.

Assigning an Authorization Operation to a Field

A Field Descriptor should already have been created for the field that requires the
authorization operation.

In the field descriptor:

This is the screen where the application builder sets the Authorization Operation on the Field
to be secured. Each relevant setting is described below.

Authorization Settings
All Authorization Operations defined for the current application should appear in the drop
down selection.
Read Authorization Operation - Only users returned by the Authorization Operation will
have access to view this field. If no operation is selected all users with be authorized to
view this field.
Edit Authorization Operation - Only users returned by the Authorization Operation will
have access to edit this field. If no operation is selected all users with be authorized to edit
this field.
Both User Authorization List Operations and User Authorization Operations apply.

Assigning Authorization Operation to an SQL Operation

Current Application - Edit Operation

This is the screen where the application builder sets the Authorization Operation on the SQL
Operation to be secured. Each relevant setting is described below.

Administration
Security Type-Operation Security
Execute Authority Operation - All Authorization Operations defined for the current
application should appear in the drop down selection. If no operation is selected all users
with be authorized to execute this operation.

Both User Authorization List Operations and User Authorization Operations apply.

Deploying Applications

Once an application has been built, it is ready to be run by users. A WOW application can be
run by any user on your network or Internet/Intranet/Extranet. WOW applications can be
run by specifying a URL in the form: http://yourIP/wow64/run?id=x where yourIP is the
TCP/IP address of the WOW server and x is the WOW application ID. The IP can be found by
opening a DOS window on the WOW server and issuing an IPCONFIG command as shown
below:

In this example, WOW applications can be run using:
http://192.168.0.2/wow64/run?id=0
where 0 is the WOW application ID which is found in the Application menu in the WOW
Builder. Each new WOW application gets the next sequential number.

NOTE: Tomcat and WOW install by default on port 8080 which would require a URL such as:
http://192.168.0.2:8080/wow64/run?id=0.
Tomcats port can be configured in the default Tomcat directly (…/config/server.xml). See
Tomcat documentation for details.

WOW Utilities
WOW is packaged with a set of utilities that helps the application builders manage different
aspects of WOW. The three utilities included will help you manage different user accounts,
theme management, and keyed possible values management. Themes are discussed in
more depth later in this guide.

Users

The Users drop-down menu in WOW Utilities contains two operations, Add Users and View
Users. User accounts are used for security purposes within WOW. If an application’s security
type is set to “SQL Operation”, then the email address and password will be used to enter
these ‘secure’ applications.

Add User
Adding a new user is a very straight-forward process. Simply click on the Add User
Operation like shown in the screen shot above to set-up a new user. The screenshot below
shows an example of the Add User Operation.

Security Information
User Name – This is the user name that will be used to sign on to secure operations within
WOW.
Password – This is the password that will be used in conjunction with the User Account
being created.
Security Level– This is the security level available for the user. Security levels were
discussed in detail earlier.

User Information
First Name – This is the first name of the user account being created.
Last Name – This is the last name of the user account being created.

Additional Properties
Theme – ###

View User
The View User screen simply displays the user accounts that have already been created
within WOW. The screen shot below will be very similar to the screen displayed after
initially signing on to the WOW Utilities.

The View User screen simply displays the user accounts that have already been created
within WOW. The screen shot below will be very similar to the screen displayed after
initially signing on to the WOW Utilities.

Themes

Themes are the look and feel applied to your WOW Applications. The Themes section of
the WOW utilities contains two operations. Add Themes and View Themes.

Add Theme
Theme properties are contained within specific CSS files. This Chapter will not explain the
process of creating a theme, when adding a theme WOW assumes the CSS file has already
been created and it simply needs to be added to the list of available themes. The
screenshot below shows the Add Theme operation screen. After adding the relevant
information simply hit the insert button to add the new theme.

CSS File –This is the location of the CSS file that contains the properties for the newly
created theme. The location of the file will differ according to where and how you installed
WOW on your system.
Description –This is simply a description of the newly created theme.
Properties – ###

View Theme
The View Theme operation is similar to the View User operation described earlier in this
Chapter. This operation simply lists the themes that have been previously created. The
screenshot below shows an example of the View Theme operation, listing all of the themes
available within your copy of WOW.

Dynamic Themes with URL Parameter

There may be the case where you have added multiple themes and want certain customers
to open the application with a particular theme. Well you can do this dynamically by setting
the theme to be used in the URL as a parameter.

For example... let’s say we have the following URL to an application:
http://www.planetjavainc.com/wow/runApp?id=0

We can dynamically change this application's theme by specifying a parameter on the URL:
_pj_theme=-5 or _pj_theme=-3 or any other theme id that exists shown in view themes
screen.

NOTE: A negative theme number indicates a system theme.

So for example...
http://www.planetjavainc.com/wow63/runApp?id=0&_pj_theme=-5 will open the
application using the Light Brown theme.
http://www.planetjavainc.com/wow63/runApp?id=0&_pj_theme=-3 will open the
application using the Light Blue theme.

The theme id is created when you add a new theme and can be seen in the view themes
screen.

Keyed Values

This section allows you to manage keyed values, including possible values, configuration
values, and user/error messages.

View Possible Values
With a keyed possible value, you specify a key, a value, and a display value for each PV.
(The key is used to group the PV's together). Then in an FD (field descriptor) under the list
of Possible Value Keys, you will see the keys of the Possible Values that you added. This is
a separate PV option than using PV Operations - so there are two different ways to use PV's
with WOW.

This displays a list of all of the Possible Value Keys that have been created. The size of the
list will vary greatly depending on how many PV keys have already been set up on your
version of WOW. The screenshot below shows a list of PV keys.

Add Possible Value
Adding a keyed Possible Value is much liking adding a user account or theme like described
above. The figure below shows an example of the Add Keyed PV Operation.

Possible Value Group Information
Key – This is the Key that will be used with the Possible Values. Possible Value Keys
were described in detail in Chapter 10 of this guide.

Possible Value Information
Value – This is the value given to a specific possible value. Generally numeric data is
used for the value when working with PVs but this is not required.
Display Value - This is the value displayed for the PV. This should be as descriptive as
possible making it easy for the user to understand the value being used.

Additional Information
Display Order – ###

View Configuration Values
###

Add Configuration Value
###

Add User Message
User Messages provides the ability for you to supply your own messages to your WOW
Applications. The User Messages section of the WOW utilities contains two operations, “Add
User Message” and “View User Messages”

The screen shot below shows the Add User Message screen. After adding the relevant
information, simply hit the insert button to add the new user message.

Message Information
● Message Type – This is the message type to override (insert, update, delete,

etc.). This field is required.
● Matching Error Message Text– For error messages, this is the matching text

from the original message that will be used to identify the specific message to
replace. This field does not apply to the non-error message case and will be
ignored. This field is optional. If this field is not specified in the error case, the
user message will be used for all error messages of the specified message type. If
you specify two messages of type "Delete Error" and the second entry leaves the
matching text field blank, the first entry will be used when a match is found and
the second entry will be used in all other cases for that message type.

● Replacement Message- This is the replacement message to be displayed. The
message text can contain non-prompting parameters (ex. ??FLD1 or ???USERID).
This field is required.

NOTE: For performance reasons, the user message entries are read in once after the
server is started. If message entries are changed after the server is started, you will most
likely need to restart your server again to incorporate the new replacement messages.

File Information
● Connection Name – This is the connection alias used to access the table. This

field is required.
● Library Name – This is the library that contains the table. A generic '*' (without

the quotes) is allowed to represent all libraries. This field is required.

● Table Name– This is the table name that the message override applies to (for any
insert, update and delete). This field is required.

View User Messages
This displays a list of all user messages that have been created.

Interfacing WOW with Excel

Connecting WOW to an Excel File

To connect WOW to a MS Excel file the following steps need to be done:
1. Create an ODBC System Data Source (DSN) on the same system where the

application server is installed. (Remote access is not supported)
2. The DSN must reference the desired Excel worksheet.
3. Connect WOW to the created DSN from step 1 & 2.

NOTE:
● Only read access is recommended although limited update capabilities are available.
● Support is available via JDBC ODBC Bridge.
● Excel files must reside on the same system as the WOW server although mapped

drive support may be possible.
Creating system DSN (Windows Only)

1. Go to start > Control panel > administrative tool > Data Source(ODBC) as seen in the
screenshot below.

2. Choose "System DSN" and click on "Add" button.

3. Under "Create New Data Source" panel, choose "Microft Excel Driver (*.xls)" then hit
"Finish" as in the screenshot below

Pointing to desired Excel worksheet

1. After clicking "finish" as the screenshot above, name the "Data Source Name" as
desired and remember this name for using later then click on "Select Workbook." In

this example, the DSN is named "Mexcel."

NOTE: There may be connection problems if trying to connect to a version under
Microsoft Access/Excel 2000.

2. Point the DSN to the Excel file location (My file in
C:\planetj\wowExcel\testWOWExcel.xls) then click "OK."

NOTE: Only Uncheck the "Read Only" box (screenshot above) when data from excel
spreadsheet needs to be updated.

3. Click "OK" (screenshot below)

4. Click "OK" (screenshot below)

Connecting WOW to created DSN (screenshot below)

● JDBC Driver: MS Access/Excel (ODBC)
● The IP Address: where DSN is located (in example it is “localhost”)
● dsn: Mexcel (this name was created earlier in step 1 of Pointing to the desired Excel

worksheet)

The sample connection string:

● JDBC Driver: MS Access/Excel (ODBC)
● URL: jdbc:odbc:localhost;dsn=Mexcel;

Syntax of SQL select, update statement

The screenshot below is an excel file that is accessed using WOW:

SQL select statement syntax

Inside "testWOWExcel.xls" file, there are 3 excel worksheets by default which are sheet1,
sheet2 and sheet3. In this example, the data is on sheet1.

NOTE: The use of [] around the worksheet name and the trailing $ is a MUST while the use
of [] around fields such as UserID, Firstname, etc is optional. This may be required on
many systems.

Basic SQL Queries Using the SELECT Statement

Select * from [Sheet1$]

Other Queries Using the SELECT Statement

SQL allows you to select specific columns from a table.
SELECT Firstname, Lastname, workdept , salary FROM [Sheet1$]

Using a WHERE clause with the SELECT statement

SELECT Firstname, Lastname, workdept , salary FROM [Sheet1$] where
FirstName like ?
or
SELECT * FROM [Sheet1$] where workdept like ?

NOTE: In a WOW application, the select statement written with "?" allows the end user to
be prompted to generate results. The SQL statement including a "like" statement allows the
end user to gather their information with a fuzzy search – or only needing to enter a portion
of the query – i.e. last name/first name.

SQL update statement syntax

Basic SQL Queries Using the UPDATE Command

UPDATE [Sheet1$] SET [Bonus] = [Bonus] + '200'

Using a WHERE clause with the UPDATE statement

UPDATE [Sheet1$] SET [Bonus] = [Bonus] + '200' WHERE WORKDEPT =?
or
UPDATE [Sheet1$] SET [SALARY]= [SALARY] + 1000 WHERE WORKDEPT=?

Creating Reports and Graphs with WOW and Excel

Since Excel is widely used for data analysis and charting, we added the capability to access
data from your Database and then chart that data into custom graphs and charts in
Microsoft’s Excel program. This is a very powerful feature because it allows you to
customize the graph and charts a great deal and still bring in the data from Database.

We also have the feature to use one of WOW’s Excel templates to create and run excel
charts from data returned in an operation. You can get your data into excel spreadsheets
and have it update dynamically by using the web query option in Excel. This means you
have to set up your own Excel file.

WOW Setup for Excel Web Query

First, make sure that you have created an application and have an operation that selects
from the database some information that you would like to graph. In this case, we have
selected from the pjdata.employee table the number of employees in each department. The
way we do this is select all of the departments and then sum up all the records of
employees and which department they are a part of:
select deptno, sum(deptno) as employees_in_department from pjdata.employee

'employees_in_department' is a derived field meaning it is created when the select
statement is run and is not actually inserted into the database.

Creating and Updating Excel Tables from WOW Web
Data

WOW excels at pulling information from any database and presenting it in a browser. This
provides powerful processing but at times you may want to have an EXCEL spreadsheet
setup with graphs and other formatting attributes and then merge database data into it at
runtime. The feature described below, gives you that ability.

Steps to create a web query

1. Use of this feature requires Microsoft Excel. Open a new Excel spreadsheet or a
preexisting spreadsheet that you would like to use for graphing. With Excel opened as
below and a WOW application running with your target data showing, you are ready to
begin the web query process. Excel provides the ability to perform a “web query” to
get data. The web query is just a URL call that returns data in an HTML format. Excel
allows you to specify an HTML table to use as a data source. In Excel go to Data –>
Import External Data –> New Web Query to get data from a WOW HTML table.

2.

This enables Excel users to code a web query that invokes a WOW operation and p
ts the results into a “PREBUILT” Excel worksheet. Data can be refreshed on demand.
efore creating the Web Query, there is some information that needs to be noted and chang
d about the application for it to be properly shown in Excel. The application like
shown below has many queri

3. A common problem is that when the table data is imported or refreshed, copy and
delete icons will show up on the excel spreadsheet, which may be undesirable.
Simply adjust the operation to disable those features. Refer to the appropriate areas

of this manual to adjust these features.

In the display menu for the Operation you may want to disable the ptions for De
ails, Inserts, Deletes, and Updates so they won’t be shown on the table. You may also
emove he “copy row” feature in the display properties by setting it to false as sh
wn below. Now that all the extra options are turned off, m ke sure you write down the
Operation ID located in the Internal section of properties. Excel will u

4.

If you only want certain columns of a table to display in Excel you could write t
ose columns in the Display Columns field with commas between columns. Then only tho
e columns would show in WOW and be updated in Excel. After changing all e

5.

Click on the name of the application to run it in a new browser window, then copy the
generated URL or write it down. This is the URL that will used by Excel Web

ery. It should look similar to this: http://www.planetjavainc.com/wow/

nApp?id=286 Now we are ready to go through the Excel import external data p
ocess.

Setting up a New Web Query in Excel 2002

6. After opening the Web Query dialog box shown below, you will see a browser window.
7.

This is the web page that Excel is going to look for to open up HTML tables and update
the Excel tables. Now, either type in the URL of the application or use copy and paste.

This will open up the application but without the operation or table that you want.
Now append the Operation ID recorded earlier to the URL.

8. The web query should now be of the following form:
www . planetjavainc . com / wow / runApp ? id = xx & opid = yy . xx is the id of the application
while yy is the id of the operation. For this example we use
http :// www . planetjavainc . com / wow / runApp ? id =286& lvid =1242 . Now press enter and
the operation should show up in the web query screen. There will be little yellow
arrows around the page representing the location of various html tables. Select the
one containing your desired data. A green checkmark will appear to indicate you have
selected a particular table. Press import to proceed.

http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=286&lvid=1242
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy
http://www.planetjavainc.com/wow/runApp?id=xx&opid=yy

9.

Excel will then return an import data screen with the option to either create a new
worksheet with the data from WOW or put it in current worksheet. Pick the option
suitable for your situation.

After selecting the data location, Excel will momentarily say “getting data” and then
display the WOW table information in an Excel table like shown.

10. By using a right click anywhere on the imported data, options such as refresh values,
edit query information, or edit range options are available.

Setting up a New Web Query in Excel 2000 or earlier

6. Setting up the Web Query is a little different in earlier versions of Excel. Below is the
New Web Query screen. Option 1 is where you enter the application and operation’s
URL. After setting the URL you need to set the second option to use only specific
HTML tables. Use the table identifier “WOW” which is the standard HTML table id that
WOW will generate for data tables. Then after setting the third option to none, the
web query should be ready to run.

7.
You will get the import data screen asking where you want to put the table data from
WOW. Select a location and click OK.

8.
After selecting where to put data, Excel should say “getting data” and display the
WOW data in an Excel table as shown below.

9.

After the table has been created, you can right click anywhere on the data for various
web query options (refresh values from web, edit query information, or edit range
options).

Integrating WOW with Existing Excel Files

WOW provides the ability to generate a new spreadsheet from any existing data. It may be
desirable to have a preformatted spreadsheet, which contains titles, business charts, etc
and have WOW update the data dynamically from your database. This is possible with new
support in WOW 7.0. A spreadsheet is placed on the web server at specific location. WOW
can be configured to read in the spreadsheet, update the data, and send the merged Excel
file to the users browser.

Setting WOW Operations to use Existing Excel
Templates

An application and operation must be created that provides access to your data. For
example, the following operation does a simple select of states and the balance due by each
state. Next, the operation needs to have some properties set so that it knows which Excel
file to use. Shown below is the operation with the SQL that returns the states and balances
due for each state.

After the operation is open for edit there are some properties that need to be added. In the
Properties field of the operation there are property groups like DisplayColumns,
DetailDisplay and TableDisplay. These are the standard property groups but there may be
others. In the group, TableDisplay, add the following property: excelXls:true;

NOTE: Properties and PropertyGroups ARE case-sensitive.

This property tells the operation to display the chart icon when the operation runs.

Now that WOW knows to show the Excel Chart icon, it needs to know which Excel file to
open when the chart icon is pressed. The specifics of the property need to be set, such as
what excel file to open, and what worksheet inside of that excel file to write the data to.

To set the specifics of the excelXls property we need to insert a Property Group called XLS,
as shown below. XLS has three properties that need to be set, including:

XLS {
fileName:excel_reports.xls;
sheetIndex:2;
directToFile:false;

}

filename - This is the Excel template file that will be opened when the chart icon is
pressed.
sheetIndex - This is the worksheet in the Excel file where the data will be written.
directToFile - true: go directly to Excel chart when the operation runs. false: have to
click on chart icon to open Excel chart.

Now that the operation display properties have been set, update the operation. After
execution of the operation, a graph icon () shows up alongside the Microsoft Word and
Excel icons.

After the data has been returned, click on the graph icon to open the data in an Excel
graph and/or spreadsheet. The data will be automatically imported and shown on an Excel
chart, there is also a tab called data that has the returned results in table format.

An Excel macro updates the chart after the data has been updated. Users may see a
security warning that a macro is being run. They can safely grant permission.

NOTE: It is necessary to use a template provided by PlanetJ because of the included
macros. However, a template can be changed to any graph or display and can be made to
handle any number of columns or rows.
The PlanetJ template is located in the ‘wowexcel’ folder inside your application server. For
example:
C:\Program Files\Apache Software Foundation\Tomcat 5\webapps\wow64\web-
inf\wowexcel\
There are a few samples included that you can use as is or copy, rename, and change to
make custom chart or reports. When using the XLS property filename just specify the file
name and WOW will automatically look in the wowexcel folder.

Creating Reports from Data Imported from WOW into
Excel

After creating an Excel spreadsheet, it is possible to create reports, order forms, etc using
the power of Excel along with WOW. This WOW feature allows the full power of Excel to be
combined with live database data. Sophisticated Excel applications can be created complete
with macros, graphs, and pivot tables.

Restrictions

● The Excel macro requires that data be written to a spreadsheet called “data” and the
chart be in a sheet called “chart”. Experienced Excel developers may update the
macro or create their own to meet specific needs. WOW professional services may
also be used for customization needs.

● Browsers may handle downloads differently. Browser support and specific browser
behavior are beyond WOW support and control.

● Users may be required to have MS Excel or the MS Excel viewer to view spreadsheets.

Utilizing Existing RPG Applications
To utilize existing legacy code, such as an RPG or Cobol programs, you’ll need to create an
external stored procedure for each program to be called. Once a procedure exists, WOW
can call the procedure, which in turn calls the program. Creating a procedure registers the
program so that SQL can locate it, as well as defining properties needed to correctly call the
program, such as the program name, the parameters required, the language the program
was written in, etc.

Calling an RPG Program That Returns a Result Set

Add Code to Return a Result Set

To have an RPG program return result sets, you’ll need to add code similar to the following
in your RPG program:

C***
C* Opens the cursor for Stored Proc *
C***
*
C/EXEC SQL
C+ DECLARE C1 CURSOR FOR SELECT * FROM MYLIB/FILE1
C/END-EXEC
C/EXEC SQL
C+ Open C1
C/END-EXEC
C/EXEC SQL
C+ set result sets cursor c1
C/END-EXEC
In the example above, all of the data from file FILE1 in MYLIB will be returned to the calling
procedure. When SQL runs a select statement, the resulting rows comprise the result
table. A cursor (C1) provides a way to access a result table. It is used within a program to
maintain a position in the result table. SQL uses a cursor to work with the rows in the result
table and to make them available to your program.

Defining the Stored Procedure

Next you’ll need to define an external stored procedure for the RPG program above:
CREATE PROCEDURE MYLIB.MYPROC ()

DYNAMIC RESULT SETS 1
LANGUAGE RPGLE
SPECIFIC MYLIB/MYPROC
NOT DETERMINISTIC

 MODIFIES SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'MYLIB/RPGPGM'
PARAMETER STYLE GENERAL;

In the example above, there are no parameters, you’re returning one result set, the
program language is RPGLE and the program name is RPGPGM in MYLIB. Run the SQL
statement using one of the available SQL interfaces such as STRSQL, iSeries Navigator (Run
SQL Scripts) or MySQL Query Browser.

AUTHORITY TIPS: Make sure the WOW user ID has proper authority to the program, as
well as any files accessed by the program. You can grant authority to the program by
running SQL similar to the following:
GRANT EXECUTE ON SPECIFIC PROCEDURE MYLIB.MYPROC TO WOW

NOTE: The above example assumes the WOW user ID is WOW.

Defining the WOW Operation

Defining an operation to call the external stored procedure is very similar to defining any
other operation. The primary difference is what’s specified for the “Operation Code”.
Instead of specifying an SELECT statement, you’ll specify the procedure call:
CALL MYLIB.MYPROC()

The above example has no parameters in the procedure call. For more details on using
stored procedures, including the use of field descriptors, see the chapter entitled Stored
Procedures in the first section of the Builders Guide.

More Than One User Running the Operation at the Same Time

After the RPG program is called, the table MYLIB/FILE1 is still open and having more than
one user call the same operation could result in an “In Use” error for the other users. One
possible solution is to have the original RPG program only populate the result table. Then
define a second “wrapper” program to call the first program, copy the table to QTEMP and
then return the results set from the QTEMP version of the table. Below is an example of a
wrapper program written in RPG Free:

HDFTACTGRP(*NO)
DReportPgm Pr Extpgm('MYPGM')
*
D Run Pr ExtPgm('QCMDEXC')
D Cmd 200A CONST
D len 15P 5 CONST
*
/Free

//Create the file in QTEMP

 Monitor;
 run('DLTF FILE(QTEMP/FILE1)':200);
 On-Error;
 EndMon;

 //Create empty file in
QTEMP
 run('CRTDUPOBJ OBJ(FILE1) FROMLIB(MYLIB) +
 OBJTYPE(*FILE) TOLIB(QTEMP)':200);
 run('OVRDBF FILE(FILE1) TOFILE(QTEMP/FILE1)':200);
 run('CLRPFM emppfbk':200);

 //Call the program that populates FILE1.
 // The override ensure that the QTEMP file is populated.

ReportPgm();

 run('DLTOVR
*ALL':200);

 //Open the cursor for Stored
Proc
 Exsr
Resultset;

 return;
/End-Free

C***
C* Opens the cursor for Stored Proc *
C***
C Resultset Begsr
*
C/EXEC SQL
C+ DECLARE C1 CURSOR FOR SELECT * FROM QTEMP/EMPPFBK
C/END-EXEC
C/EXEC SQL
C+ Open C1
C/END-EXEC
C/EXEC SQL
C+ set result sets cursor c1
C/END-EXEC
C Resultset endsr

Calling an RPG Program That Returns a MODS (Array)
in RPG Free

Add Code to Return an Array

The following code shows a simple RPG Free program that receives an integer and loops
through a customer master file (CSTMSTPF) for the number of times specified in the pRows
parameter:
h dftactgrp(*no)
fCstMst1 if a e k disk prefix('CS.')
d cs e ds qualified extname(CSTMSTPF)
d CustRS pr
d pRows 10i 0
d CustRS pi
d pRows 10i 0
d CustList ds occurs(100)
d CSTMST 481a
d i s 10i 0
/free
i = 0;
setll *Loval CstMst1;
read CstMst1;
dow not %eof(CstMst1);
if i >= pRows; leave;
 endif;i = i + 1;
%occur(CustList) = i;
CSTMST = cs;

read CstMst1;enddo;
exsr setResult;

*inlr = *On;

begsr setResult;
/end-free
C/EXEC SQL
C+ SET RESULT SETS ARRAY:CustList FOR:I ROWS
C/END-EXEC
/free
endsr;

/end-free
Any file could have been used here and any number of parms could have been passed in to
dictate the criteria for the end result set. The key is that each time a record is read, that
entire record is added to a multiple occurrence data structure (array CustList). Once
the looping has completed, an SQL result set is created based on the multiple occurrence
data structure and is sized based on the value in variable I, as shown in subroutine
setResult.

Defining the Stored Procedure

Next you’ll need to define an external stored procedure for the RPG program above:
CREATE PROCEDURE MYLIB.MYPROC (IN LOOPCT INTEGER)

DYNAMIC RESULT SETS 1
LANGUAGE RPGLE
SPECIFIC MYLIB/MYPROC
NOT DETERMINISTIC
MODIFIES SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'MYLIB/RPGPGM'
PARAMETER STYLE GENERAL;

In the example above, there is one integer parameter, you’re returning 1 result set, the
program language is RPGLE and the program name is RPGPGM in MYLIB. Run the SQL
statement using one of the available SQL interfaces such as STRSQL, iSeries Navigator (Run
SQL Scripts) or MySQL Query Browser.

AUTHORITY TIPS: Make sure the WOW user ID has proper authority to the program, as
well as any files accessed by the program. You can grant authority to the program by
running SQL similar to the following:
GRANT EXECUTE ON SPECIFIC PROCEDURE MYLIB.MYPROC TO WOW

NOTE: The above example assumes the WOW user ID is WOW.

Defining the WOW Operation

Defining an operation to call the external stored procedure is very similar to defining any
other operation. The primary difference is what’s specified for the “Operation Code”.
Instead of specifying a SELECT statement, you’ll specify the procedure call:
CALL MYLIB.MYPROC(10)

The above example has one parameter in the procedure call. For more details on using
stored procedures, including the use of field descriptors, see the chapter entitled Stored
Procedures in the first section of the Builders Guide.

Calling an RPG Program That Returns a MODS (Array)
in RPG IV

Add Code to Return an Array

The following code shows a simple RPG IV (RPGLE) program that has a char(2) state input
parameter and returns records from file (QIWS/QCUSTCDT) that match the passed in state
value:
FQCUSTCDT IF E K DISK
D* Multi-occurrence data structure for returning rows to calling procedure
D CUSTLIST DS OCCURS(100)
D DCUSNUM 6S 0
D DLSTNAM 8A
D DINIT 3A
D DSTREET 13A
D DCITY 6A
D DSTATE 2A
D DZIPCOD 5S 0
D DCDTLMT 4S 0
D DCHGCOD 1S 0
D DBALDUE 4S 0
D DCDTDUE 1S 0
D*
D ROWCOUNT S 10I 0
C*
C*--*
C* Inputs
C *ENTRY PLIST
C PARM PSTATE 2
C*--*
C MOVE '0' OFF 1
C MOVE '1' ON 1
C Z-ADD 0 ROWCOUNT
C READ QCUSTCDT 99
C** Read Loop
C *IN99 DOWEQ OFF
C* Only add records where the passed in state matches
C STATE IFEQ PSTATE
C ADD 1 ROWCOUNT
C** Write record to CUSTLIST at occurrence ROWCOUNT
C ROWCOUNT OCCUR CUSTLIST
C Z-ADD CUSNUM DCUSNUM
C MOVE LSTNAM DLSTNAM
C MOVE INIT DINIT
C MOVE STREET DSTREET
C MOVE CITY DCITY
C MOVE STATE DSTATE
C Z-ADD ZIPCOD DZIPCOD
C Z-ADD CDTLMT DCDTLMT
C Z-ADD CHGCOD DCHGCOD
C Z-ADD BALDUE DBALDUE
C Z-ADD CDTDUE DCDTDUE
C ENDIF
C** Read next record
C READ QCUSTCDT 99

C ROWCOUNT IFEQ 100
C MOVE ON *IN99
C ENDIF
C ENDDO
C*
C/EXEC SQL
C+ SET RESULT SETS ARRAY:CUSTLIST FOR:ROWCOUNT ROWS
C/END-EXEC
C*
C MOVE ON *INLR

Any file could have been used here and any number of parameters could have been passed
in to dictate the criteria for the end result set. The key is that each time a record is read,
that entire record is added to a multiple occurrence data structure (array CustList). Once
the looping has completed, an SQL result set is created based on the multiple occurrence
data structure and is sized based on the value in variable ROWCOUNT, as shown in the SET
RESULT SET statement.

Defining the Stored Procedure

Next you’ll need to define an external stored procedure for the RPG program above:
CREATE PROCEDURE WOWRPG63.MYPROC (IN STATE CHAR(2))

LANGUAGE RPGLE
NOT DETERMINISTIC
READS SQL DATA
CALLED ON NULL INPUT
EXTERNAL NAME 'MYLIB/RPGPGM'
PARAMETER STYLE GENERAL;

In the example above, there is one char(2) parameter, you’re returning a result set, the
program language is RPGLE and the program name is RPGPGM in MYLIB. Run the SQL
statement using one of the available SQL interfaces such as STRSQL, iSeries Navigator (Run
SQL Scripts) or MySQL Query Browser.
AUTHORITY TIPS: Make sure the WOW user ID has proper authority to the program, as
well as any files accessed by the program. You can grant authority to the program by
running SQL similar to the following:
GRANT EXECUTE ON SPECIFIC PROCEDURE WOWRPG63.MYPROC TO WOW

NOTE: The above example assumes the WOW user ID is WOW.

Defining the WOW Operation

Defining an operation to call the external stored procedure is very similar to defining any
other operation. The primary difference is what’s specified for the “Operation Code”.
Instead of specifying a SELECT statement, you’ll specify the procedure call:
CALL MYLIB.MYPROC (?100841)

The above example has one parameter in the procedure call. The parameter is a prompt
parameter using field descriptor 100841. 100841 is assigned to the state field for file
QIWS.QCUSTCDT and the number will vary for each system and connection.

The properties of the operation need to contain a StoredProcedure property group to
designate which field descriptors are to be used for the input parameter and the results set:
StoredProcedure {
 tables: qiws.qcustcdt;
}

For more details on using stored procedures, including the use of field descriptors, see the
chapter entitled Stored Procedures in the first section of the Builders Guide.

Calling an RPG Program That Returns Parameters

Generally WOW does not utilize the data returned from a procedure call (OUTPUT
parameters), unless the procedure call is included in a Java custom Row class. For more
details on calling procedures from a custom Row class, see the WOW Programmer’s Guide,
chapter Rows, section Example of Overriding the insert Method in a Row Subclass.

Advanced Development Techniques

Multi Value Reference Fields: [PRO]

In scenarios where you may want to reduce the number of columns shown to reduce
horizontal scrolling, using a "ReferenceField" may provide value. A ReferenceField is a
derived field the refers to other fields to get it's value and field descriptor attributes. A
ReferenceField would allow a single field to have different associations as well. Consider a
scenario where a Shipment record had a 2 columns, one that held the UPS tracking number
and another that help the FEDEX tracking number. Using a ReferenceField would allow you
to condense both columns into 1 and also handle the scenario where the WOW http
reference association is different for FEDEX versus UPS.

Using the ReferenceField:

1. Create the initial SQL operation such as:
"SELECT SHIPMENT_ID, FEDEX#, UPS#, CASE WHEN FEDEX# is NULL THEN 'UPS#'
ELSE 'FEDEX#' END as D_TrackingLink " Notice that if FEDEX# column is NULL then
we return a String that represents the column name to use to show the actual value
and FD attributes otherwise we return the column 'UPS#'. The result returned is used
to find ANOTHER field in that same row to use for the actual value.

2. Create a derived FD (field descriptor) for "D_TrackingLink". In this field set the
FieldClass to "planetj.database.field.ReferenceField".

3. Run your operation and test.

Here is an example screen where the last column is a reference field. For this example, the
operations SQL is:

SELECT LASTNAME, JOB, BONUS, COMM, CASE WHEN BONUS > COMM then
'Bonus' else 'COMM' END as d_actual_pay FROM PJDATA.EMPLOYEE where comm
> 0 and bonus > 0

Considerations

1. The ReferenceField class takes the column heading of the 1st column that was
produced.

2. All column names returned to ReferenceField must exist in the Row instance.
3. You can "hide" the source fields by setting their FD to hide or by not including them in

the operations columns to display.

WOW Performance
WOW utilizes the JDBC database servers that are specified in the connection definitions
therefore, typically, performance is nearly all outside of WOW's control.

What happens is:
● WOW passes an SQL statement to the server (AS400).
● The server (AS400) executes the statement using the best known optimization, as

determined by database code. This includes such factors as file size and database
indexes.

● After execution, WOW reads the data returned from the server (AS400), generates
HTML, and then sends the HTML to the browser. Thus, nearly all performance is
dependent on the database server (AS400).

However, WOW does have facilities to control and enhance performance as shown in the
sections that follow.

WOW's Built In High Performance Cache

WOW allows the user to set a caching level for each operation:

The Caching options let you control how WOW stores data so it can be used later. By
allowing WOW to retrieve the data from the cache, a call to the database server can be
avoided when the operation is run. For more details on the caching level, see chapter
“Create User Operations”, section “User Operations” in the WOW Builder ’ s Guide p .1 .

Connection Properties

Each JDBC database driver allows properties to be passed to the database server. You can
specify these properties in the connection definition:

For the IBM AS/400 Remote driver, these can be found in the IBM i Infocenter .
By default, WOW sets the following two AS/400 properties on a new connection:

● prompt=false - Specifies whether the user is prompted if a user name or password is
needed to connect to the server. If a connection cannot be made without prompting
the user, and this property is set to "false", then an attempt to connect will fail.

● trace=false - Specifies whether trace messages are logged. Trace messages are useful
for debugging programs that call JDBC. However, there is a performance penalty
associated with logging trace messages, so this property should only set to "true" for
debugging. Trace messages are logged to System.out.
NOTE: Each property begins with a ';'.

You can also affect performance by setting the number of maximum connections allowed:

The default is ten. The maximum number of connections used can have a significant affect
on your performance. This number will vary based on the power of the system.

Controlling the Number of Records Returned

Setting the number of records returned in an SQL operation can improve performance.

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/rzaha/conprop.htm
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/rzaha/conprop.htm
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/rzaha/conprop.htm
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8
http://docs.google.com/a/planetjavainc.com/View?docid=ddzm3xv5_41f3nj9pc8

The Row Count value controls how many rows are displayed in the results table. The smaller
the number, the quicker each read from the database is. The default is 50. If the number
of results is greater than the row count, links are generated on the results table allowing the
user to page through it. This field should be adjusted based on your system performance
and connection speed.

Controlling the Number of Fields Read

Reducing the number of fields read from an SQL SELECT statement to only those required
can improve performance since less data will need to be read from the database. For
example, instead of specifying all fields (‘*’), specify only the specific fields necessary:

Optimizing SQL Performance for AS400 (iSeries)

There are a variety of methods or tools to determine how the performance of an SQL
statement can be improved on an AS/400.
Find a reference(s) to SQL statement optimization techniques for AS400.

Compare SQL Performance Against Non-WOW Methods

Try taking the SQL statement from WOW and use one of these other methods to compare
the results:

● AS400's STRSQL
Or

● Put the SQL into iSeries Navigator (Run SQL Scripts)

If the SQL statement performs poorly by methods other than WOW, most likely the problem
lies with the SQL statement or the file itself.

Using STRDBG

You can use debug messages for performance hints. On the AS/400:
● Turn debug on for your session è STRDBG *ALL .
● Run the SQL statement (to be run in the operation) using STRSQL.
● After successfully running the statement, look at the job log for debug messages from

the query optimizer

Using iSeries Navigator (STRDBMON)

The iSeries Navigator version of the STDBMON is called a detailed SQL performance
monitor. You can start this monitor by right-clicking SQL Performance Monitors under the
database portion of the iSeries Navigator tree and selecting New-> Detailed. You can
monitor a single query or all queries. Once the monitor is started, it appears in the SQL
performance monitors list.

For more details on iSeries optimization, see the “Optimizing Query Performance Using
Query Optimization Tools” section in the "Performance Optimization " Reference.

Controlling How the Data is Accessed

On the iSeries, how the data from a file is accessed is determined by the query optimizer.
If an index exists, the index is used. Otherwise, that decision is left to the query optimizer,
which may not be the most efficient means. For more information on indexes (iSeries), see
the "Performance Optimization " Reference.

Tomcat Server Performance

How you have your server configured can also affect your overall performance. For
example, the amount of memory allocated to your server can have quite an effect on how
the WOW application performs. For more information on Tomcat configuration, see the
Optimizing Tomcat reference.

SQL Fragments [PRO]

Overview

WOW Enterprise Edition 7.0 and above include a feature that can significantly enhance
performance of SQL. Consider a table that holds tax payer information and includes first
name, last name, and social security number. If an optional search is created allowing
entry of any of the three columns:

SELECT * from x.y where firstname = COALESCE(?, firstname) and lastname =
COALESCE(?, lastname) and SSN = COALESCE(?, SSN)

If “Jones” is entered for lastname, the database processor must still process selection on firstname and
SSN which can affect performance. SQL Fragment will translate this query to:

 SELECT * from x.y where lastname = ‘Jones’

Using SQL fragments, the WOW operation would be coded as: (This assumes lastname is required on
search)

http://www.planetjavainc.com/wow_docs/Optimize_Tomcat_form.pdf?target=_blank
http://www.planetjavainc.com/wow_docs/Optimize_Tomcat_form.pdf?target=_blank
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzajq/queryopt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzajq/queryopt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzajq/queryopt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/rzajq/queryopt.htm

SELECT * from x.y where lastname = ? [[and firstname = ?]] [[and SSN = ?]]

Which will perform much faster.

This document describes how to work with SQL fragments in WOW. A SQL fragment is a portion of an
SQL statement which can be dynamically removed or included in the statement at runtime. Whether or
not a fragment is included is based on which of the statement’s parameters the user has entered values
into. Fragments are removed from the SQL only when it is sent to the database; fragments are never
removed when generating the onscreen prompts for a SQL statement.

Defining a fragment

The sample SQL statement below selects fields from table A; the user can search on fields from table A
or table B:

SELECT A1, A2, A3, A4 FROM LIB.A INNER JOIN LIB.B ON A1 = B1
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)
ORDER BY A1

To define a fragment of code, enclose the fragment between two left brackets and two
right brackets:

SELECT A1, A2, A3, A4 FROM LIB.A INNER JOIN LIB.B ON A1 = B1
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]]
ORDER BY A1

This causes WOW to create a SQL fragment which contains the following code:

AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)

By default, WOW will automatically remove any fragments which contain display parameters when
none of those parameters have values. So if the user ran that SQL statement and left both the B2
and B3 prompts blank, then the SQL which WOW would actually run would be:

SELECT A1, A2, A3, A4 FROM LIB.A INNER JOIN LIB.B ON A1 = B1
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL)
ORDER BY A1

Fragment groups

SQL fragments can be associated together in a fragment group. Putting multiple
fragments together in the same group tells WOW what it should do with fragments
which do not contain display parameters (fragments with display parameters are
removed when all of those parameters do not have values). Using the above example,
we could define two fragments which belong to the same group.

SELECT A1, A2, A3, A4 FROM LIB.A [[{group1} INNER JOIN LIB.B ON A1 = B1
]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{group1} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]]
ORDER BY A1

Adding a group name surrounded by curly braces at the beginning of the fragments
tells WOW that both fragments belong to the same group; in this case the group is
named “group1”. Any name could be used to identify the group; as long as both
fragments use the same name they will be in the same group. In this case the first
fragment does not contain any parameters (a “non-parameter fragment”), so it will be
removed when the other fragment in its group (the “parameter fragment”) is removed.
 As noted before, parameter fragments are automatically removed by WOW if none of
the display parameters contain values. By using a parameter group, WOW can totally
remove the join from the query when the user is not searching on any of the fields in
the second table.

In the next example the SQL contains multiple fragment groups:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{groupB} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] [[{groupC} AND
C2 = ?]]
ORDER BY A1

The fragments in groupB are only included when either B2 or B3 is given a value. The
fragments in groupC are only included when the C2 parameter has a value.

SQL Adjustments

In some cases, adding fragments to your query allows you to remove redundant SQL
from the statement. For example:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL)
[[AND (A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL)]]
[[{groupB} AND (B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL)]]
[[{groupB} AND (B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]]
[[{groupC} AND (C2 = ? OR CAST(??9 AS CHAR(10)) IS NULL)]]
ORDER BY A1

In this query, we can safely remove most of the checks which compare a parameter’s
value to null. The SQL uses those checks so that when the user doesn’t enter a value
into a parameter, then that parameter effectively matches all values in the database
(in other words, that parameter isn’t used in the search). However, enclosing a
parameter in a fragment achieves the same thing, so the null checks are no longer
needed. This statement will act the same as the one above:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL)
[[AND A2 = ?]]
[[{groupB} AND B2 = ?]]
[[{groupB} AND B3 = ?]]
[[{groupC} AND C2 = ?]]
ORDER BY A1

Note that for this technique to work correctly each fragment needs to only contain a single display
parameter, since a fragment is included as long as any one of its display parameters has a value.

Extra care needs to be taken when all of a statement’s display parameters are in fragments. For
example:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]]
WHERE 1 = 1
[[AND A1 = ?]]
[[AND A2 = ?]]
[[{groupB} AND B2 = ?]]
[[{groupB} AND B3 = ?]]
[[{groupC} AND C2 = ?]]
ORDER BY A1

Here it is important to include the “1 = 1” following the WHERE. If the user chooses to
leave all of the parameters blank, then none of the fragments will be included in the
SQL. In that case, the SQL will not be correct unless there is a comparison of some
sort following the WHERE.

Groups with multiple parameter fragments

In all of the above examples, the fragment groups have all contained two fragments.
 In the next example, the fragment group contains three fragments, two of which have
parameters and one with no parameters:

SELECT A1, A2, A3, A4 FROM LIB.A [[{group1} INNER JOIN LIB.B ON A1 = B1
]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{group1} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] AND
(A9 = ? OR CAST(??9 AS INTEGER) IS NULL) [[{group1} AND
B4 = ?]]
ORDER BY A1

In order for the first fragment (the JOIN) to be included, one of the display parameters
in either of the other two fragments must contain a value. So if B2 or B3 or B4
contains a value, the first fragment will be included. Only if none of those parameters
have a value is the first fragment removed. The second and third fragments are
removed as usual, when none of the display parameters in that particular fragment
has a value.

To summarize, when a group contains multiple fragments with display parameters, if
any of those fragments have values in their display parameters, then the group’s
fragments without display parameters will be included.

Note that in the above example, WOW will properly adjust the parameter numbering
when fragments are removed. So if the second fragment is removed, then the ??9
parameter would be changed to ??5 since there are four fewer parameters preceding it
in the SQL.

Inner fragments

In some cases such as the following example, you may need to include fragments
within other fragments:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]

[[{groupC} INNER JOIN LIB.C ON A1 = C1 [[{groupB} AND C6 = B6]]]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{groupB} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] [[{groupC} AND
C2 = ?]]
ORDER BY A1

The fragment in purple is only included when groupB and groupC are both included.
 That fragment describes the join between tables B and C, and so it only should be
included in the SQL if both of those tables are in the SQL. By directly assigning the
purple fragment to groupB and then embedding it within a fragment from groupC, the
purple fragment becomes part of both groups.

Fragments with multiple groups

A fragment can belong to multiple groups. In the above example this was done by
embedded one fragment within another. An alternative way to assign multiple groups
to a fragment is by listing out the various groups it belongs to:

SELECT A1, A2, A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B ON A1 = B1
]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]] [[{groupB,groupC} AND C6 = B6
]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{groupB} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] [[{groupC} AND
(C2 = ? OR CAST(??9 AS CHAR(10)) IS NULL)]]
ORDER BY A1

Here, the third fragment belongs to both groupB and groupC. This example will
behave exactly like the previous one; the third fragment is only included when both
groupB and groupC contain display parameters with values. (For example, if
parameters B3 and C2 were given values by the user then the purple fragment would
be included, but if B3 were the only parameter with a value then the fragment would
be removed.) To summarize, when a fragment without display parameters belongs to
multiple groups, then that fragment is only included when all of those groups are
included.

Consider the following example, where the first fragment contains the A2 column:

SELECT A1, [[{groupA} A2,]] A3, A4 FROM LIB.A [[{groupB} INNER JOIN LIB.B
ON A1 = B1]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]] [[{groupB,groupC} AND C6 = B6
]]

WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{groupA,groupB} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] [[{groupA,groupC} AND
C2 = ?]]
ORDER BY A1

In this example, that fragment will be included when one or more of the B2, B3, or C2
parameters is given a value by the user. Unlike the purple fragment which requires
parameters from all of its groups to have values before it is included, the A2 fragment
is included when any one (or more) of the B2, B3, or C2 parameters has a value. This
is because it only belongs to a single group whereas the purple fragment belongs to
multiple groups.

Fragment properties

In the previous examples curly braces were used to list out the groups to which a
fragment belongs. However, the curly braces can also be used to directly assign
fragment properties using the normal property group syntax. For example:

SELECT A1, A2, A3, A4 FROM LIB.A [[{id: fragment1; groups: groupB;} INNER
JOIN LIB.B ON A1 = B1]]
[[{groupC} INNER JOIN LIB.C ON A1 = C1]] [[{id: fragment3; groups:
groupB,groupC;} AND C6 = B6]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{groupB} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]] [[{groupC} AND
C2 = ?]]
ORDER BY A1

Here, two properties are defined for the first fragment, the id property and the groups
property. The following fragment properties can be assigned:

● class – The name of the Java class which should be used for the fragment. The class
must implement IFragment and provide a default constructor

● groups – The names of the groups to which the fragment belongs
● id – A unique identifier for the fragment. The ID is useful when working with the

fragments in code; otherwise there is no need to assign an ID
● include – This property describes when WOW should include the fragment in the

SQL statement. The possible values for this property are:
○ auto – WOW should decide when to include the fragment and when not to (this

is the default value)

○ false – The fragment should never be included in the SQL. This setting can be
overridden in code, but otherwise the fragment won’t be included

○ true – The fragment should always be included in the SQL. This setting can be
overridden in code, but otherwise the fragment will be included

● remove values – The list of values which will cause WOW to remove the fragment
from the SQL. If the value of a display parameter in the fragment is equal to one of
the values in the list, then that display parameter is treated as though it did not have
a value (but only for the purposes of WOW’s fragment logic). So a parameter whose
value is in the remove values property can cause its containing fragment (and other
fragments in its fragment group) to be removed from the SQL. If the value “null” is
present in the remove values property then display parameters without values can
cause their fragment to be removed as usual; if the remove values property is present
but does not contain “null” then display parameters without values will not cause
their fragment to be removed.

When the only property that is being assigned is the groups property, then you can
simply list out the fragment’s groups, as is done in the initial examples. Only when
you want to assign other properties do you have to use the property group format.

In this example, the A3 prompt will never be sent to the database:

SELECT A1, A2, A3, A4 FROM LIB.A [[{group1} INNER JOIN LIB.B ON A1 = B1
]]
WHERE (A1 = ? OR CAST(??1 AS INTEGER) IS NULL) AND
(A2 = ? OR CAST(??3 AS CHAR(10)) IS NULL) [[{group1} AND
(B2 = ? OR CAST(??5 AS CHAR(10)) IS NULL) AND
(B3 = ? OR CAST(??7 AS CHAR(10)) IS NULL)]]
[[{groups:group2; include:false;} AND A3 = ?]]
ORDER BY [[{group2}A3,]] A1

However, if the user enters a value for the A3 prompt, then the results would be
sorted by the A3 column. In other words, the fact that the A3 parameter is never sent
to the DB does not prevent the last fragment from being sent to the DB if the user
enters a value for the A3 parameter.

Working with fragments in code

Internally each fragment defined in the SQL statement is represented by an IFragment
object. (That interface, like most of the fragment code is located in the
planetj.database.sql.fragment package.) The IFragment objects are contained in the
SQLContext object. One important thing to keep in mind is that fragments are never
actually removed from a SQLContext’s internally stored code. Instead, they are
stripped out of the code which is sent to the database, but remain in the code stored in
the SQLContext. For this reason, in code the terms “included” and “removed” are not

used to describe the fragments; instead “active” and “inactive” are used to refer to
fragments which are sent to the DB, or not.

There are several methods which can be used to retrieve the code for a SQLContext,
depending on how much processing you want WOW to do with the code:

● getOriginalCode() – Returns the code as it was entered in the builder
● getCode() – Returns the internal code stored in the SQLContext. This will include all

fragments regardless of whether or not they are active, but does not include the
fragment control characters (i.e. the opening “[[{group1, group2}” and closing “]]”
are not included).

● getCode(true) – Returns the internal code stored in the SQLContext, after removing
any fragments which are not active. All fragment control characters are also
removed.

Below is a listing of some of the methods which can be used when working with
fragments:

● SQLContext.getFragments – Returns a SQLFragmentCollection object which
contains the individual fragments

● SQLFragmentCollection.getFragment – Gets a fragment by its ID. A fragment’s ID
is assigned with the id property in the property group.

● SQLFragmentCollection.getFragmentGroup – Gets a group of fragments by the
group name

● IFragment.isActive – Returns true/false depending on whether or not the fragment is
active

● IFragment.setActive – Sets a fragment as either being active or not active (if a
fragment is not active it is not sent to the database)

● IFragment.getDisplayParameters – Returns a List containing all of the fragment’s
display parameters

● IFragment.getDisplayParameterStatus – Examines all of the display parameters in
the fragment and returns one of the following constants:

○ PARAMETERS_NONE – The fragment does not contain any display parameters
○ PARAMETERS_VALUELESS – None of the fragment’s display parameters have

values
○ PARAMETERS_SOME_WITH_VALUES – The fragment contains multiple display

parameters, some of those parameters have values and others do not
○ PARAMETERS_ALL_WITH_VALUES – All of the fragment’s display parameters

contain a value

Actions/Events [PRO]
From the WOW Builder, run Development Tools > Actions. This menu item lets the
user define a “table driven” action or event. Table driven actions and events are
normally defined completely as an entry within the WOW event/action table, without the
need for coding or special property group configuration.

Action

An action is a visible option that can be defined for a Row or RowCollection (Table). An
action, when clicked on, can run either a pre-defined operation or a java class. An
action can be visible as a button, icon, link, etc.

Creating an Action

To create an action:
1. Bring up the Actions and Events (Other > Actions/Events)
2. Click on Add Action/Event

Entry Information:

○ Entry Type - Leave as Action.
○ Entry Subtype - defines what type of action it is. A Row action is an action

that is associated with a Row. For example, it can be an action to the left of
each row (Table view), it can be a button from the row detail screen, it can
be a right click option when you hover over a row (Table view), etc. A
Rowcollection action is associated with a results display (Table view) and
can be visible as a button on the top or bottom of the results, in the tool bar
(same location as refresh, print, etc.), etc.

○ Action Name - Unique name assigned to action.
○ Active - Provides ability to turn off action without removing it.
○ Description - A detailed description of the action.

Operation Inheritance:

○ Source Application - Lets the user limit the visibility of the action to a
specific application.

○ Source Operation - Lets the user limit the visibility of the action to a specific
operation.

Action/Event Execution Information:

This defines what gets run by the action. You need to specify either an operation
or a Java class.
○ Operation - Select an operation to be called. If the operation is an

association operation, then the current Row is passed as the associated
Row (for parameter substitution).

○ Java Class - Specifies a Java class file that is a subclass of
planetj.wow.action.AbstractAction and implements the handleAction method:

Java Classes Provided by WOW:
■ planetj.wow.repository.SaveSnapshotOfObjectAction - Action that

saves a snap shot (copy of current Row or RowCollection) into the
WOW Object Repository table.

NOTE: Class files written as a subclass of AbstractAction are compatible
for both Actions and events.

Action Location (for Row action):

○ Detail View:
■ Bottom left, Bottom right, Top left, Top right
■ Left of (existing) buttons, Right of (existing) buttons.

○ Results (Table) View:
■ Left side of each row - action similar to edit, display, etc.
■ Hide on results display - only show action on details display
■ Drop down - Shows the action as a drop down choice on each Row

from a derived field configured for running drop down choices. See the

section “Implementing the Drop Down Location” for more details. Normally,
the Display type is set to Text for this type of action.

■ Right Click - show option when hovering over a row and right clicking.
 Normally, the Display type is set to Text for this type of action.

Action Location (for Row Collection action):

○ Bottom left, Bottom right, Top left, Top right
○ Left of Search Fields - Left side of operation’s search fields.
○ Right of Search Fields - Right side of operation’s search fields.
○ Toolbar - Action is location in toolbar above the results (same location as

refresh or printer icon). Normally, the Display type is set to Link/Image.

Action Properties:

○ Display Type - How is the action to be displayed.
■ Link/Image - If an image is specified, displays as an image (jpg, png,

etc.). Otherwise it’s displayed as a link.
■ Button - Show action as a button
■ Checkbox - Show action as a check box
■ Text - Show action as text (used mostly for location “Right Click” or

“Drop Down”).
○ Image - Used with the display type Link/Image.
○ Action Group - Group name to assign to action. Actions with the same

group are grouped together.
○ Action Display Order - If more than 1 action is assigned to an operation in

the same location, this dictates which action is displayed first (lower order #).
○ Style Class - Style class (CSS) to use when rendering this action on the

screen.
○ Label - By default, the action name is used for the label (e.g. button text, link

text, etc.). Specify an alternate label to use.
○ Please Wait JSP - When the action is running, you may want to display a

please wait jsp. Specify the jsp to use, or specify “TRUE” to use the default
please wait JSP.

○ Browser Target - Specify a target for the browser window to be used, such
as _blank (renders in a new window). Default is _self (same window).

○ Start Navigation Group - Should this action start a new navigation group
(add divider for right click or space between button groups)?

○ End Navigation Group - Should this action end the current navigation
group?

○ New Window Properties - Lets you specify new window properties, such as
the window size. E.g.
"toolbar=no,location=no,directories=no,status=no,menubar=no,copyhistory=
no,width=700,height=800".

Action Messages:

○ No Rows Selected Error Text - On a Results (Table) screen, lets you
specify a message to display when no rows are selected when an action is
run. May be useful when TableDisplay property selectionType is not set to
“none”. If coding a custom action class, you will need to add code to extract
the message and display it:

TableDrivenActionRow actionRow =
(TableDrivenActionRow) props;
throw new
CMException(actionRow.getNoSelectionErrorText());

○ Confirmation Text - Text to display (warning - do you want to run this
action?) before the action runs. Default is to provide no warning before
running the action.

○ Action Completion Text - Alternate completion text to display after the
action runs successfully. If coding a custom action class, you will need to
add code to extract the message and display it:

TableDrivenActionRow actionRow =
(TableDrivenActionRow) props;
if (ec instanceof HttpExecutingContext) {
 String message = actionRow.getMessage();
 if ((message != null && message.trim().length() >
0)) {
 DataEngineServlet.setUserMessage(message,
 ((HttpExecutingContext) ec).getRequest());
 } else {
 DataEngineServlet.setUserMessage(null,
((HttpExecutingContext)
 ec).getRequest());
 }
}

Authorization:

Authorization works the same way as operation authorization. It controls which
users are able to see/use and action. This is only applicable when an application
is secured (signon required).
● Security Type - The type of security measures to use.
● Security Level - Security level is used in conjunction with the Security Type

feature.

● Auto Run Op. - Allows you to specify an operation that will automatically run
on a set schedule. The pull-down for this field displays any available Auto
Run operations created within the application.

● Execute Authority Operation - Used to limit which users can view and run
the operation. All Authorization Operations defined for the current application
should appear in the drop down selection. If no operation is selected, all
users will be authorized to execute this operation.

Implementing the Drop Down Location:

To fully implement a Row action using the drop down location, it must be
configured as follows:
1. Define 1 or more actions with a location of Drop Down and Operation

Inheritance (scope) pointing to the desired operation to contain the drop
down options.

2. For the operation (step a), the SQL results must include a derived field to be
used for showing the drop down option(s) associated with each row. For
example => Select a.*, ‘’ as D_DROPDOWN From xxx.yyy where
field D_DROPDOWN is the derived field in this example.

3. In the same operation’s properties, include this DisplayColumns property to
make the drop down field editable from the table (results) display:

DisplayColumns { editableResults:D_DROPDOWN; }
4. Create a derived field descriptor for derived field D_DROPDOWN and set

the following in Advanced Settings:
1. Field Class: planetj.wow.action.ActionField
2. Field Descriptor Type: Derived

Once configured, the derived field should look like this, with a drop down choice
for each drop down action created:

Event

An event is very similar to a trigger, where an event is fired automatically when a
change is made to a table.

Creating an Event

To create an event:

1. Bring up the Actions and Events (Other > Actions/Events)
2. Click on Add Action/Event

Entry Information:

○ Entry Type - Change to Event.
○ Entry Subtype - defines when the event is run or triggered (when a row

changes). Choices are Pre-Insert, Post-Insert, Pre-Update, Post-Update,
Pre-Delete or Post-Delete.

○ Event Name - Unique name assigned to event.
○ Active - Provides ability to turn off event without removing it.
○ Description - A detailed description of the event.

Event Scope:

○ Source Application - Lets the user limit when the event is to run to a
specific application.

○ Source Operation - Lets the user limit when the event is to run to a specific
operation.

Table That Triggers Event:

You need to identify which table (when changed) triggers the event.
○ Source Connection - Defines which connection is used to change the table.

 Choose between any of the existing connections. Connection choice “**
INTERNAL CONNECTION **” refers to the metadata connection used by
WOW. This connection should only be used when utilizing a built-in WOW
class such as planetj.wow.repository.SaveSnapshotOfWowObjectAction .

○ Source Table - Identifies the table to attach the event or trigger to.

Action/Event Execution Information:

This defines what gets run by the event. You need to specify either an operation
or a Java class.
○ Operation - Select an operation to be called. If the operation is an

association operation, then the current Row is passed as the associated
Row (for parameter substitution).

○ Java Class - Specifies a Java class file that is a subclass of
planetj.wow.action.AbstractAction and implements the handleAction method:

Java Classes Provided by WOW:
■ planetj.wow.repository.SaveSnapshotOfWowObjectAction - Used to

save a snapshot of WOW objects (Operations, Field Descriptors) when
an operation or field descrptor is changed.

■ planetj.dataengine.email.SendEmailForLogEntryEvent - Used to send
an email automatically when a table is changed. A user configures an
email log entry and specifies the entry ID as a class parameter. e.g.
planetj.dataengine.email.SendEmailForLogEntryEvent,id=1 .
 Parameters supported:

■ id - log ID from EMAILLOG.
■ mlib - optional WOW email library.

NOTE: This class is only available with the WOW Mail add-on.
 More details available with WOW Email documentation.

NOTE: Class files written as a subclass of AbstractAction are compatible
for both Actions and events.

Example Uses:

Adding Action to save a copy of a single Row or Table Results:

To add an action that will provide the ability to save the current Row or table results
from an operation, use the following settings:

This action adds an action to the toolbar to every operation for the specified application.
 The action is displayed as the icon “dataengine/images/camera-icon.png”.

The action utilizes the built-in action
“planetj.wow.repository.SaveSnapshotOfObjectAction”, which saves table results as a
blob object inside WOW’s object repository table “WOBJECTREP”. See “Object
Repository Data” for more details.

Adding Event to automatically save changes to WOW Operations:

To add an event that saves a copy of the operation after each time it is updated, use the
following settings:

This feature lets the developer see what changes have occurred to an operation and by
which developer. The event utilizes the built-in event
“planetj.wow.repository.SaveSnapshotOfWowObjectAction”, which saves the operation
as a blob object inside WOW’s object repository table “WOBJECTREP”. See “WOW
Metadata Changes” for more details.

You can also set the Source Table to FIELDDATA (*), which lets you track field
descriptor changes.

Adding Action to Run 2nd Operation That Remembers Rows
Selected

To add an action that calls another operation and displays rows selected from the 1st
operation, use the following steps:

Create 1st Operation:

Create 1st operation that allows for selection:

Set Key Fields to Global:

For any field from operation 1 that you need WOW to remember for future operations,
change the field's FD (Field Descriptor) so that it's usage ID = -3 (Global). In our case, we
want the employee ID.

Create 2nd Operation:

Create a 2nd operation that filters the results based on previously selected rows (1st
operation).

Notice the use of the global parameter (??!fieldname) within the IN clause. When the 2nd
operation runs, WOW will replace ??!EMPNO with something like:

EMPNO IN (101,135,1002)

The values 101, 135, and 1002 are the EMPNO values from 3 selected rows.

Create Action on 1st operation to Run 2nd Operation:

When a table driven RowCollection action is defined to run a 2nd operation and 1 or more
fields from the operation are set to global, WOW will save the selected row information for
each global field. In order to provide an action button on the 1st operation that runs the
2nd operation, set something similar to the following:

● Entry Type: Action
● Entry SubType: RowCollection (Table)
● Source Operation: Operation where action is rendered.
● Operation: Operation the action runs
● Display Type: Button
● Label: Button text

This action adds a button at the bottom of the results (table) generated by operation
Employees:

So now if operation 1 (Employees) is run and a user selects the last 2 rows and then clicks
on the Show Selected Rows button, WOW:

1) Saves the selected rows and stores them for global field EMPNO

2) Prepares the 2nd operation (Previously Selected Employees)

3) Sees the operation's SQL referencing a global variable in an IN clause (utilizes multiple
values):

SELECT EMPNO,FIRSTNME, MIDINIT, LASTNAME, JOB, WORKDEPT, mgrnum, BIRTHDATE
FROM PJDATA.EMPLOYEE WHERE EMPNO IN ??!EMPNO

4) Finds a RowCollection for EMPNO and substitutes in all empno values:

SELECT EMPNO,FIRSTNME, MIDINIT, LASTNAME, JOB, WORKDEPT, mgrnum, BIRTHDATE
FROM PJDATA.EMPLOYEE WHERE EMPNO IN (22231,33333)

5) Runs the altered SQL

Troubleshooting and Debugging WOW

My iSeries DB2 files are locked by WOW which is
affecting my saves and other programs!

OS/400 may apply a READ lock on files that are accessed more than once from the same
connection. This is a function of OS/400 and is done for performance and is not caused by
WOW. If you need to use a file that OS/400 has locked use the following command:
ALCOBJ OBJ((QIWS/QCUSTCDT *FILE *SHRRD *FIRST)) CONFLICT(*RQSRLS)

NOTE: Adjust the library and file name as well as the locking level to suit your needs.
WOW is unable to connect to the IBM iSeries Metadata
Server because of restricted ports

WOW can work with any metadata server. Every organization handles network controls and
restrictions differently. If WOW is not able to connect to your server it may be caused by
blocked ports. In the example of an iSeries machine there are numerous ports that need to
be opened for full JDBC support that WOW uses, yet maybe your network administrator or
firewall is blocking some of these ports.
At IBM’s website you can go to this link http :// www -
1. ibm . com / servers / eserver / iseries / toolbox / faqports . htm shown below and see what ports
need to be opened for full JDBC and server controls. Do the same for your system and have
your network administrator allow these ports so that WOW can connect. On the iSeries
WOW requires the following ports to be open (other databases use different ports, check
your database documentation):

● 449
● 8470
● 8471
● 8476

http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm
http://www-1.ibm.com/servers/eserver/iseries/toolbox/faqports.htm

Change User Name and Password of WOW for new
metadata system

Switching metadata servers or types of servers will return some kind of error. If changing
the Login that connects you to the metadata machine or server such as MySQL or iSeries, it
is necessary to change the web.xml document located under <Apache
Path>/Tomcat/webapps/wow60/web-inf/web.xml. Right click on web.xml and open with
notepad. Shown below is the XML Tags that need to be changed.

It is necessary to change the PJ_SYSTEM_URL, PJ_USER_ID and the PJ_PASSWORD initial
parameter values.

As an example, the new login to the metadata system might be wow60 instead of wow. To
access the metadata for WOW, change the init-param PJ_USER_ID value to wow60 instead
of wow.
<init-param id="WOW_Metadata_System_User_ID">
<param-name>PJ_USER_ID</param-name>
<param-value>wow60</param-value>

</init-param>
Now, change the metadata system settings and logins without reinstalling WOW. If there
are errors thrown about connection to the WOW metadata system then the web.xml
document is a good place to look first.

Configuring Logging (Log4j)

As WOW runs, it logs events that are important. Some events are more important that
others, so we made this logging configurable by modifying a property file in the wow folder.
You may want to change the level of logging to a more verbose mode to see detailed or
debugging information. In most cases, you will just want to log exceptions or events that
cause WOW to error. By default, only events of levels WARN, ERROR, and FATAL are logged.

Log4J Configurations

Currently events can be logged at the following levels (listed in order of increasing
severity): DEBUG, INFO, WARN, ERROR, and FATAL. You can also control where you want
the log messages outputted to. You can direct them to Standard Out (stout), or a file
(output.log) or both. By default we direct output to both stdout and output.log.
The master configuration file is called log4j.cnfg. You can find this file in the following
directory: <TOMCAT INSTALL ROOT>\webapps\wow\dataengine\logging\.

For more verbose logging, try renaming the Verbose Stdout out.log log4j.cnfg file to
log4j.cnfg. Likewise, if you would like a less verbose logging level, rename one of the Light
Stdout… files to log4j.cnfg. Make sure you keep the original log4j.cnfg file so you can always
change it back.

NOTE: You will have to restart the Web server for the changes to take effect.
For more advanced logging techniques, see the following link:
http :// jakarta . apache . org / log 4 j / docs / manual . html .

WOW Log File (output.log)

http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html
http://jakarta.apache.org/log4j/docs/manual.html

If your log4j.cnfg is directing output to a log file, you can find that log file by searching for
the file name set in the config file. By default, the file is named output.log and it can be
viewed by looking in the Start Button shortcut where you click Start Tomcat. For example:
Start Button => Programs => Apache Tomcat 4.1 =>output.log.

Running a SQL Statement with Period in the name of a
Database Table

WOW 6.0 does not support a period in any of the names of a table that are being modified
by a SQL statement. For example: SELECT * FROM PJDATA.EMPL.NM – where all the rows of
EMPL.NM are being selected will not work. We suggest that you create a logical over
“EMPL.NM” and give it a normal name such as “EMPLNM”.

When Running WOW off of a Linux or Unix machine and
with MySQL, some operations don’t work

When running operations in on any UNIX machine and using MySQL as Metadata Server
some of the operations are throwing errors or not working. This may be because MySQL
running on a Unix System requires all library (schema names) and table name to be in
UPPER CASE. Check to make sure all your files being accessed are in UPPER CASE and
restart the MySQL Server.

When creating a row, the Current Date -CURRENT
returns the wrong date

When inserting a new row, a default timestamp can be obtained by putting *CURRENT in
the FD of a Date Field. Unfortunately, the time might be off by either a time zone or just by
hours, minutes or seconds. This is normally a configuration issue from your OS/400 or JDK.

Instructions on how to correctly setup the time zone offsets are in IBM Redbooks .

Changing Database Tables and Views:

The JDBC driver provider may cache information about tables and views for performance
reasons. If you change the definition of a table or view, you may need to restart the
associated WOW connection for the database change to be enforced.

WOW Administration and Support

Backing Up WOW Metadata

All of WOW’s critical information is found within its metadata. This makes backing up your
data very crucial. Backing up important data within WOW or any other program for that

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0044.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0044.html?Open

matter is one of the most important ways you can assure that your organization will run
smoothly. The backup process will be different on most machines.

Backing Up WOW Metadata from AS/400

If your installation stores WOW metadata on the AS/400 you should regularly backup the
libraries PJUSER64 and PJSYS64. PJUSER64 contains user metadata while PJSYS64 contains
WOW metadata. By default, the PJUSER64 library contains all operations, applications, and
field descriptors that you will have created. In the event of disaster recovery, restore these
libraries to your AS/400. (If you are using an application library other than the default, then
you should backup that library).

Backing Up WOW Application Code

You should also regularly backup WOW’s application code and any customer Java classes or
other web files you may have created during your development. All this code is contained
and web files are contained with in your application server’s …/webapps/wow64 folder. This
folder should be backed up on a regular basis.

Backing Up WOW Metadata Using DB2 on Windows

NOTE: You do not need to backup DB2 on Windows for WOW 6.4. Storing WOW metadata
on DB2 on Windows is not formally supported in WOW 6.4.
This section will give an overview of backing up metadata using DB2 on Windows (DB2 is
IBM’s Database program).

To back-up metadata with IBM WebSphere first goto:
Programs-> IBM DB2 ->Control Center

Once the DB2 Control Center is opened locate the database where your metadata is located.
If there are any other databases that are important you can back them up here also. To
backup a database simply right click on the database and go to backup-> database. After
clicking database another window will open which will be similar to the screenshot below:

Next click browse, enter the location where you want your metadata backup saved to and
click backup now. You will get two messages the first telling you the backup has began and
the next telling you the backup has been completed.

Disaster Recovery

Disaster recovery procedures involve the following steps.
1. Restore the application server on which WOW is running. Normally, this will be either

Tomcat or WebSphere. The WOW 6.4 download bundles all needed components plus
Tomcat. This can be used to restore the application server in the event it is needed.

2. Restore or replace the …/webapps/wow64 folder in your environment. This will
restore all WOW’s application code plus any user specific files. It is recommended to
back up your webapps occasionally, as all your custom resources reside here.

3. Restore AS/400 libraries PJSYS64 and PJUSER64 from your backups. These libraries
contain metadata used to execute WOW based applications.

Version Control

Managing WOW application from a version control perspective involves the following steps.

Web Resources (Java, JSPs, HTML, etc)

These resources are PC based files residing in your IDE of choice and ultimately in the
webapps/wow64 folder of your application server. These files can integrate with any PC
version control package such as CSV. These web resources residing in folder wow64 can be
saved at a version boundary using a simple windows copy folder operation and archived
along with the metadata to provide version control and backup support.

Metadata

Metadata can be achieved at version boundaries with the associated web resources from
above. Simply copying the library or schema at a version boundary also provides for
version control.

NOTE: Using the application library support described in this manual can
enable multiple version support.

Web Application Server Information

WOW has the ability to run on different Web Applications Servers. Web Application Servers
are used to put dynamic information on the Web. WOW runs on three major Web
Applications Servers. These are IBM WebSphere, Apache Tomcat, and Web Logic. Tomcat is
the only free Web Application Server of the three. The following links will direct you to
detailed information on the various application servers.

IBM WebSphere
http :// www . ibm . com / websphere
http :// www . ibm . com / software / webservers

Apache Tomcat
http :// jakarta . apache . org / tomcat
http :// jakarta . apache . org

Web Logic
http :// www . bea . com
http :// www . bea . com / products / weblogic / server

Getting Support for WOW

Terms and conditions of WOW support vary based on your individual license agreement. In
general technical defect support is provided as part of your purchase while product usage,
design, and consulting support are chargeable items.

NOTE: WebSphere, Tomcat, and Weblogic are separate and independent products.
Technical support for usage and defects in these products is NOT covered by your WOW
license.
Below is the contact information that can be used to get any information that you need
concerning WOW.

Email Address:
support @ planetjavainc . com

Technical Support by Phone:
760.432.0600

mailto:support@planetjavainc.com
mailto:support@planetjavainc.com
mailto:support@planetjavainc.com
mailto:support@planetjavainc.com
mailto:support@planetjavainc.com
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/products/weblogic/server
http://www.bea.com/
http://www.bea.com/
http://www.bea.com/
http://www.bea.com/
http://www.bea.com/
http://www.bea.com/
http://www.bea.com/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://jakarta.apache.org/tomcat
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/software/webservers
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere
http://www.ibm.com/websphere

WOW Copyright Information

The Web Object Wizard (WOW) is owned by PlanetJ Corporation, copyright 2003.
This product includes software developed by the Apache Software Foundation
(http :// www . apache . org /)

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

